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ABSTRACT

We consider the problem of sparse signal reconstruction from
noisy 1-bit compressed measurements using a statistically de-
pendent signal, as an aid. We assume that this signal does
not share joint sparse representation with the sparse signal
and call it a heterogeneous side-information. We assume that
compressed measurements are corrupted by additive white
Gaussian noise before quantization and sign-flip errors after
quantization. We propose a generalized approximate mes-
sage passing-based algorithm for signal reconstruction from
noisy 1-bit compressed measurements which leverages the
dependence between the signal and the heterogeneous side-
information. We model the dependence between signal and
heterogeneous side-information using copula functions and
show, through numerical experiments, that the proposed al-
gorithm yields a better reconstruction performance than 1-bit
CS-based recovery algorithms that do not exploit the side-
information.

Index Terms— sparse signal reconstruction, 1-bit com-
pressed measurements, approximate message passing, hetero-
geneous side-information

1. INTRODUCTION

Compressed sensing (CS) [1, 2] deals with the reconstruction
of high-dimensional sparse signals using fewer measurements
than dictated by the Nyquist sampling theorem. The standard
CS based reconstruction algorithms assume infinite precision
for compressed measurements. However, compressed mea-
surements must be quantized to finite number of bits before
processing, transmission, and/or storage. 1-bit quantization
is particularly attractive because the construction of the quan-
tizer is simple and cost-effective. It also provides savings
in scarce resources like communication bandwidth, trans-
mit/processing power and storage. 1-bit compressed sensing
was introduced in [3] where the signal was reconstructed
from the sign-information of the compressed measurements.
Several reconstruction algorithms have been proposed that
allow sparse signal reconstruction from its 1-bit compressed
measurements [4–9].

The performance of reconstruction of a sparse signal from
its 1-bit compressed measurements is susceptible to noise.
The works in [7–11] have improved the reconstruction per-

formance of 1-bit CS either by taking into account noise dur-
ing signal reconstruction or using multiple measurement vec-
tors. Further improvement in the reconstruction performance
is possible if the receiver has extra information regarding the
signal and exploits it during reconstruction. In many appli-
cations, previously reconstructed signals are either similar to
or are statistically dependent with the signal that the receiver
needs to estimate. For example, in the case of dynamic MRI,
a reference scan is used to shorten the acquisition time or
improve the signal-to-noise ratio of the reconstructed images
[12]. Similarly, a previously reconstructed video frame can
be used in reconstruction of the current video frame. We
refer to the signal that aids in signal reconstruction as side-
information (SI). Several algorithms have been proposed that
incorporate the SI during reconstruction. Most of the works
[13–15] assume that the SI and the sparse signal are similar.
However, there are cases when the SI and the signal are signif-
icantly different but dependent, e.g., multimodal signals, and
hence can aid the sparse signal reconstruction. We refer to this
signal as heterogeneous SI (HSI). Some recent works [16–18]
have addressed the problem of HSI-aided sparse signal recon-
struction from compressed measurements. All of these works
consider only the real-valued compressed measurements. Au-
thors in [10] have looked into the problem of sparse signal re-
construction from 1-bit compressed measurements when the
SI is similar to the sparse signal. To the best of our knowl-
edge, the problem of HSI-aided sparse signal reconstruction
based on 1-bit compressed measurements has not been ex-
plored in the literature.

We consider the problem of sparse signal reconstruction
from its noisy 1-bit compressed measurements in a Bayesian
framework when HSI is available at the receiver. We impose
a sparsity-inducing Gaussian mixture prior on the signal. We
model the statistical relationship between HSI and the com-
pressed signal using a copula density function. We then pose
the problem of sparse signal reconstruction from noisy 1-bit
compressed measurements in the presence of HSI as a prob-
lem of MMSE estimation of the posterior density. The MMSE
estimator of the posterior density is approximated using a
message-passing algorithm called Generalized Approximate
Message Passing (GAMP) [19]. It is an efficient iterative al-
gorithm that approximates the mean of the posterior density.

We emphasize that the reconstruction of sparse signals
from its 1-bit compressed measurements is very sensitive to
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Fig. 1: 1-bit CS with pre-quantization and post-quantization
noise.

noise. Through numerical simulations, we show that, incor-
porating HSI at the decoder leads to improved reconstruction
performance.

Notation

Vectors and matrices are represented by boldface and upper
boldface characters such as x and A, respectively. Hadamard
product, i.e., element wise product is denoted by �. We
represent the Gaussian pdf with mean m and variance v by
N (.|m,v). We define In(a,b;m,v) =

∫ b
a xnN (x|m,v)dx and

PIn(τ,m,v) =
∫

xnΦ(x/
√

τ)N (x|m,v)dx. Further, Φ(x) =
I0(−∞,x;0,1), and φ(x) = N (x|0,1).

2. MEASUREMENT MODEL AND PROBLEM
FORMULATION

First, we discuss the signal model, and the measurement
model used in this work.

2.1. Signal Model
We consider the elements of the input signal x ∈ Rn to be
random and i.i.d. with joint pdf

px(x) =
N

∏
i=1

pxi(xi), (1)

where each component xi is a Gaussian Mixture

pxi(xi) = (1−λ )N (xi|0,v1)+λN (xi|0,v2), (2)

where λ is the probability of having non-zero values, and
v1 << v2 with v1 close to zero to impose sparse structure on
the signal.

2.2. Measurement Model

Figure 1 shows the measurement model of noisy 1-bit CS with
pre- and post-quantization noise. The sparse signal x ∈ RN is
compressed to a lower-dimensional vector z ∈ RM using the
random measurement matrix A ∈ RM×N . The vector, z, is as-
sumed to be corrupted by additive i.i.d. Gaussian noise vector,
n, with mean vector zero and covariance matrix vnIM , where
IM is the M×M identity matrix. This corrupted compressed
vector is quantized element-wise to +1 or -1 based on the sign
of the signal.

We assume that the channel between the 1-bit quantizer
and the receiver is noisy. The quantized measurements are
corrupted by sign-flip noise. Formally, the noisy 1-bit quan-
tized measurement model can be written as

y j = η jQ(aT
j x+n j), j = 1, · · · ,M (3)

where aT
j is the j-th row of A, n j is the j-th element of n, the

quantizer Q : R→{−1,+1} is the sign quantizer

Q(ζ j) =

{
+1, if ζ j > 0,
−1, if ζ j ≤ 0, (4)

and η j ∈ {−1,+1} is the post-quantization noise. η j is as-
sumed to follow i.i.d. Bernoulli distribution with Pr(η j =
1) = γ . We define the inverse of the quantization function,
Q−1(.), as

Q−1(y j) =

{
(−∞,0 ], if y j ≤ 0,
(0,∞), if y j > 0, (5)

where y j is the j-th element of y.

2.3. Bayesian Formulation

We assume that HSI, x̃, is available at the receiver. HSI
is assumed to be dissimilar to but statistically dependent
with the sparse signal. Using Bayesian rule, p(x|y, x̃) ∝

p(x)p(x̃,y|x) = p(x)p(x̃|x)p(y|x), the posterior distribution
of x given the noisy 1-bit quantized measurement, y, and HSI,
x̃, at the receiver is

p(x|y, x̃) ∝ p(y|x)p(x, x̃) ∝

M

∏
j=1

Iz j∈{Q−1(η jy j)}

N

∏
i=1

p(xi, x̃i),

(6)

where I(.) represents the indicator function, and ∝ represents
equality up to a proportional constant, and p(xi, x̃i) is the joint
density function that gives the joint statistical characteriza-
tion of the sparse signal and the HSI. The minimum mean
square error (MMSE) estimator of x is the mean of the poste-
rior distribution (6), i.e., E[p(x|y, x̃)]. As the evaluation of the
MMSE estimator of (6) is intractable, we develop a message
passing-based algorithm to approximate the MMSE estima-
tor.

3. GAMP ALGORITHM UPDATE EQUATIONS

The GAMP algorithm was introduced in [19] which is a gen-
eralized version of the AMP algorithm [20]. It is a message
passing based algorithm which efficiently approximates the
computationally intractable high-dimensional integration re-
quired for evaluating the mean of the posterior density in an
iterative fashion. In this section, we develop the GAMP-based
algorithm which reconstructs the sparse signal from its noisy
1-bit compressed measurements when the receiver has access
to HSI. We encourage readers to read [19] for a detailed ex-
position of the GAMP algorithm.
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3.1. Heterogeneous Side-Information (HSI)

HSI is a signal which is assumed to be of different modality
than the compressed signal and hence may not share joint-
sparse representation as considered in the literature previously
[12, 13, 15]. So, we cannot impose the Laplace distribution
between HSI and the signal during reconstruction as in [10].
Instead, we assume that the HSI is dependent with the sparse
signal, and use the Copula function [21] to model the statisti-
cal dependence between the signal and the HSI.

Algorithm 1 GAMP Algorithm for noisy 1-bit CS with
heterogeneous SI (HSI-GAMP)

1. Initialization: Set t=0 and initialize x̂t ,τ t
x, and ŝt as x̂t =

E[x], τ t
x = var[x], ŝt = 0, where the expectation and

variance of x are with respect to px.
2. Measurement Update

• Linear Step
τ

t+1
p = (A�A)τt

x, p̂t+1 = Ax̂t − τ
t+1
p � ŝt ,

• Non-Linear Step
ŝt+1 = F1(y, p̂t+1,τt+1

p ), (7)

τ
t+1
s = F2(y, p̂t+1,τt+1

p ), (8)
where F1 and F2 are applied element-wise and are
defined as

F1
(
y, p̂,τp

)
=

1
τp

(
E[z|y]− p̂

)
,

F2
(
y, p̂,τp

)
=

1
τp

(
1− var[z|y]

τp

)
.

(9)

The expectation and variance are evaluated with
respect to z∼N (p̂,τp).

3. Estimation Update

Linear Step
τ

t+1
r = ((A�A)T

τ
t
s)
−1, r̂t+1 = x̂t + τ

t+1
r � (AT ŝt+1),

where the inversion is performed element-wise
Non-linear Step

x̂t+1 = G1(r̂t+1,τt+1
r ), (10)

τ
t+1
x = G2(r̂t+1,τt+1

r ), (11)
where G1 and G2 are applied element-wise and

are defined as
G1(r̂,τr) = E[x|r̂, x̃], G2(r̂,τr) = var[x|r̂, x̃]. (12)

The expectation and variance are evaluated with respect
to px|r̂ ∝ N (·; r̂,τr)px(·)px̃|x(·).
Set t = t+1 and return to step 2.

3.2. Copula Functions

Copula functions allow the signals produced from different
modalities to have arbitrary marginal distributions, while
merging them into a joint multivariate probability distribution
function. Let FXi and FX̃i

represent the marginal cumulative

distribution of the i-th signal and HSI coefficients, respec-
tively. According to Sklar’s Theorem [21], if FXi,X̃i

(xi, x̃i) is
the 2-dimensional joint distribution of Xi and X̃i, there exists
a unique 2-dimensional copula function C : [0,1]2 → [0,1]
such that

FXi,X̃i
(xi, x̃i) =C[FXi(xi),FX̃i

(x̃i)]. (13)

Differentiating the above joint distribution, we obtain the joint
probability density function of signal and its HSI

p(xi, x̃i) = c[FXi ,FX̃i
] p(xi) p(x̃i), (14)

where c[FXi ,FX̃i
] represents the bivariate copula density func-

tion. There are several copula densities such as Gaussian cop-
ula, Clayton, and Frank copula which represent different cor-
relation structure between random variables. Among several
copula functions, the one that captures the dependencies be-
tween the signal and the HSI should be selected [21]. For
simplicity of exposition, we assume that the Gaussian copula
models the correlation between the signal and the HSI. The
distribution of Gaussian copula is defined as

cg(w) = |Rg|−
1
2 exp

[
− 1

2
wT

i (R−1
g − I) wi

]
, (15)

where wi = [Φ−1(FXi),Φ
−1(FX̃i

)]T , I is the identity matrix,
and Rg = [1 ρ; ρ 1] is the Gaussian copula parameter.

We assume that the receiver knows the copula function
that captures the correlation between the signal and the HSI.

3.3. Update Equations

In this subsection, we develop a GAMP based algorithm that
reconstructs the sparse signal from noisy 1-bit compressed
measurements when the dependence between the signal and
the HSI is modeled by copula functions. In Algorithm 1,
we summarize the steps required for the estimation of the
sparse signal and refer to it as HSI-GAMP. The algorithm
requires the evaluation of F1,F2,G1, and G2 as defined in
(9), and (12). For F1 and F2, we require the evaluation of
E[z|y] and var[z|y]. Following the steps as in [10], we obtain
the following expressions for E[z|y] and E[z2|y]

E[z|y] = 1
C1

[
γ

(
PI1(vn, p̂,τp)δ (y−1)+(p̂−PI1(vn, p̂,τp))δ (y+1)

)
+(1− γ)

(
(p̂−PI1(vn, p̂,τp))δ (y−1)+PI1(vn, p̂,τp)δ (y+1)

)]
,

E[z2|y] = 1
C1

[
γ

(
PI2(vn, p̂,τp)δ (y−1)+(p̂2 + τp−PI2(vn, p̂,τp))δ (y+1)

)
+(1− γ)

(
(p̂2 + τp−PI2)δ (y−1)+PI2(vn, p̂,τp)δ (y+1)

)]
,

C1 = γ

(
PI0(vn, p̂,τp))δ (y−1)+

(
1−PI0(vn, p̂,τp)

)
δ (y+1)

)
+(1− γ)

((
p̂−PI0(vn, p̂,τp)

)
δ (y−1)+PI0(vn, p̂,τp)δ (y+1)

)
.

As var[z|y] = E[z2|y]− (E[z|y])2, F1 and F2 can now be eval-
uated. Next, we evaluate non-linear function G1 and G2 re-
quired in the estimation update in Algorithm 1.
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Fig. 2: Reconstruction performance of the proposed method.

E[x|r̂, x̃] = 1
C2

∫
xN (x|r̂,τr)c[FXi ,FX̃i

] p(xi) dx, (16)

where C2 is a normalization constant and is given by

C2 =
∫

N (x|r̂,τr)c[FXi ,FX̃i
] p(xi)dx. (17)

Similarly,

E[x2|r̂, x̃] = 1
C2

∫
x2N (x|r̂,τr)c[FXi ,FX̃i

] p(xi)dx. (18)

From Equations (16) and (18), we can clearly see that the
method considered is general and be used for any bivariate
coupla function. The evaluation of the closed-form expres-
sions for (16), and (18) is possible if the copula density is
Gaussian and the signal x follows Gaussian distribution. In
other cases, we may need to resort to numerical integrations.
Note that, the evaluation of the mean and the variance in (16)
and (18), respectively requires unidimensional integrations
and hence are computationally feasible. Note that, in both
of the Measurement Update and the Estimation Update sec-
tions of Algorithm 1, per iteration computation is dominated
by matrix multiplication. Hence, the per-iteration computa-
tion complexity of the algorithm is O(MN).

4. SIMULATION RESULTS

We consider the problem of reconstructing a sparse signal of
dimension N from M noisy 1-bit compressed measurements.
The measurement matrix, A, is drawn from an i.i.d. Gaussian
distribution with zero-mean and 1

M variance. We assume that
the side-information at the receiver is heterogeneous, which
may or may not be sparse. We use the Gaussian copula, with
copula parameter Rg, to generate the sparse signal and the
HSI. The signal, x, follows the Gaussian mixture distribution
in (2) with λ = 0.1, v1 = 0.1,v2 = 5, and N = 100. We per-
form 100 Monte Carlo runs and compare the mean square
errors (MSE) of HSI-GAMP with 1-bitnoisyGAMP [10]. In
several experiments, we study the reconstruction performance
of the proposed algorithm. In the first experiment, we study

the reconstruction performance of the proposed algorithm as
a function of M. In Figure 2(a), we plot the MSE values of
the HSI-GAMP algorithm and the 1-bitNoisyGAMP against
M. In the second experiment, we study the effect of the sign-
flip noise on the reconstruction performance of the proposed
algorithm. Figure 2(b) shows the results of the second ex-
periment. In the third experiment, we study the effect of the
correlation parameter of the Gaussian copula, ρ , on the recon-
struction performance of HSI-GAMP. Figure 2(c) shows the
results of the third experiment. From Figure 2(a), we can see
that incorporating HSI at the receiver yields improved recon-
struction performance when compared to 1-bitnoisyGAMP.
From Figure 2(b), we can see that the reconstruction perfor-
mance of the proposed algorithm is more robust to the sign-
flip noise when compared to 1-bitNoisyGAMP. HSI-GAMP
exploits the dependence between the signal and the HSI to get
better MSE performance. From Figure 2(c), we can see sig-
nificant improvement in the reconstruction performance when
the dependence between the signal and the HSI is large. When
the dependence is large, the receiver has more information
regarding the sparse signal through its statistical characteri-
zation which leads to improved reconstruction performance.
In the third experiment, we obtain the average MSE value of
0.292 for 1-bitNoisyGAMP and is always larger than HSI-
GAMP.

5. CONCLUSION

In this work, we proposed an algorithm for sparse signal
recovery from noisy 1-bit compressed sensing when the re-
ceiver has access to HSI. We showed that taking into account
the heterogeneous side-information during reconstruction
yields an improved performance. We also showed that the
proposed algorithm is robust to sign-flip noise and can sig-
nificantly reduce the reconstruction error when the signal and
the HSI are highly dependent. In future work, we plan to
extend the proposed algorithm for the joint reconstruction of
heterogeneous sparse signals.
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