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Abstract—A new quaternion-valued adaptive filtering algo-
rithm based on extrapolated weight methods is proposed. The
proposed algorithm belongs to the class of conjugate direction
algorithms [1]. This class of extrapolation (momentum) based
algorithms is preferred to RLS-based algorithms when the matrix
inversion should be avoided, e.g. in the case of non-vector signals,
sparse signals or non-stationary signals. This paper introduces
Nesterov’s optimal gradient methods in widely linear quaternion
adaptive filtering. The resulting class of algorithm is shown to
both have similar computational complexity and comparable
performance to WLQRLS; however, the proposed method is more
stable and outperforms WLQRLS in the non-stationary case.

Keywords—Least mean square, recursive least squares gradient,
quaternions, widely linear model, Nesterov’s gradient.

I. INTRODUCTION

Adaptive filters have been widely used in numerous engi-
neering fields. In a stationary environment, the filter can con-
verge to the Wiener solution in a statistical sense in a recursive
manner, while in a non-stationary environment, the filter can
track time variations in the statistics of the input data [2]. The
least mean square (LMS) and the recursive least squares (RLS)
are two of the most popular adaptive filtering algorithms.
The former minimizes an instantaneous approximation to the
mean square error, while the latter minimizes the accumulated
squared error. Consequently, RLS is capable of converging in
much fewer iterations than LMS and usually achieves better
tracking performance. However, RLS suffers from numerical
instability and expensive computation due to the use of the
matrix inversion [2], and due to the “accumulated error” cost
function. Much research effort has been dedicated to improving
these two algorithms. For LMS, most of its variants have
focused on varying the step size, in an attempt to accelerate
the convergence and reduce steady-state misalignment [3]–[6],
while the main focus on enhancing RLS has been on effective
implementation and numerical robustness [7].

Many methods have been proposed in an attempt to create
alternative online linear algorithms which inherit the virtues
of both LMS and RLS, while mitigating some of their draw-
backs [8]–[10]. Recently, these RLS-like methods have been
incorporated into a unifying framework [1], which is based
on the work relating LMS to Kalman filters [11]. This paper
proposes an alternative algorithm by using extrapolated (or
momentum) gradients based on Nesterov’s optimal momen-
tum. Expanding on the framework introduced in [1], this paper
considers both algorithms in the quaternion domain because: 1)
quaternions are generalization of real and complex numbers so

that the derived algorithms will straightforwardly account for
both these number systems; 2) the adoption rate of quaternions
is increasing in a variety of applications, such as computer
graphics [12], array signal processing [13]–[15], color image
processing [16], [17] and source separation [18]. Hence, deriv-
ing the proposed framework in the quaternion domain offers
rigor and intuition in terms of physical interpretation, algebraic
generality and algorithmic elegance. Compared to standard
RLS, the proposed method avoids computationally expensive
and often unstable matrix inversions and is shown to exhibit
superior performance in the non-stationary case.

II. BACKGROUND

The quaternion domain H is a four-dimensional vector
space over the real field R, spanned by the basis {1, ı, , κ}. A
quaternion variable q ∈ H is of the form q = qa+qbı+qc+qdκ
where qa, qb, qc, qd are real variables and ı, , κ are imaginary
units with the properties

ı2 = 2 = κ2 = −1, ı = −ı = κ
κ = −κ = ı, κı = −ıκ = 

The conjugate of q is defined as q∗ = qa−qbı−qc−qdκ, while
the modulus of q is given by |q| =

√
q2a + q2b + q2c + q2d. Note

that quaternion algebra is non-commutative. The transforma-
tion qµ , −µqµ, geometrically describes a three-dimensional
rotation of the vector part of q about the vector part of a
quaternion µ [20]. We refer to [19], [20] for more detail on
basic quaternion algebra.

The generalized HR (GHR) calculus enables an elegant
form of gradient in the quaternion domain which is consistent
with its real- and complex-valued counterparts [21]–[23]. For
a function f (q) : HM×1 → H, where q = (q1, q2, . . . , qM ) ∈
HM×1, the quaternion gradient and conjugate gradient are
respectively given by [21]

∇qf ,
(
∂f
∂q

)T
=
(
∂f
∂q1

, . . . , ∂f
∂qM

)
∈ HM×1

∇q∗f ,
(
∂f
∂q∗

)T
=
(
∂f
∂q∗1

, . . . , ∂f
∂q∗M

)
∈ HM×1

Similar to the complex domain, it was shown that the conjugate
gradient ∇q∗f yields the steepest descent direction of the
function f [23]. This makes the conjugate derivatives a natural
choice for the optimization of quaternion algorithms. Within
the GHR calculus, the conjugate derivative is defined based
on a generalised basis {1, ıµ, µ, κµ} where µ is a quaternion.
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The left derivative operator is defined as [22]–[24]

∂f

∂qµ∗
,

1

4

(
∂f

∂qa
+
∂f

∂qb
ıµ +

∂f

∂qc
µ +

∂f

∂qd
κµ
)

The key benefits of this calculus are the novel product and
chain rule, which accounts for the non-commutative nature
of quaternion products. The product rule states that if the
functions f (q) , g (q) : H→ H are real-differentiable, then so
too is their product, that is

∂ (fg)

∂q∗
= f

∂g

∂q∗
+

∂f

∂qg∗
g

where qg∗ = gq∗g−1 is a quaternion rotation [21]. For the
chain rule, if g : S → H and f : T → H are real-differentiable
at the respective interior points, q ∈ S ⊆ H and g(q) ∈ T ⊆ H,
then the derivative of the composite function f(g(q)) is given
by ∂f(g)

∂q∗
=
∂f

∂g

∂g

∂q∗
+
∂f

∂gi
∂gi

∂q∗
+
∂f

∂gj
∂gj

∂q∗
+

∂f

∂gk
∂gk

∂q∗

=
∂f

∂g∗
∂g∗

∂q∗
+

∂f

∂gi∗
∂gi∗

∂q∗
+

∂f

∂gj∗
∂gj∗

∂q∗
+

∂f

∂gk∗
∂gk∗

∂q∗

There has been extensive work on theory and applications
of quaternion-valued adaptive filters [34]. Traditional strictly
linear quaternion filters are based on the strictly linear model
ŷ = uHx with an input vector x ∈ HM×1, a coefficient
vector u ∈ HM×1, and a target signal ŷ ∈ H. Advances in
quaternion statistics have established that only widely linear
quaternion filters based on the widely liner model ŷ = wHq,
where w ∈ H4M×1 is an augmented coefficient vector,
q ,

[
xT ,xıT ,xT ,xκT

]T
, and xı,x,xκ are rotations of x

about the ı,  and κ imaginary axes, exploits three complemen-
tary covariances in addition to the standard covariance, and
thus captures complete second-order statistical information in
quaternion signals [29], [35].

Previous works on using extrapolated gradient (or mo-
mentum) in quaternion-valued adaptive filters include those
involving the conjugacy property of the descent directions [1],
showing that the algorithm shares the same fast-convergence
behavior as that of RLS. In some circumstances where ma-
trix inversion should be avoided (e.g. sparse inputs), the
momentum-base algorithms require a robust and stable alter-
native. In this paper, we propose such a stable and robust
algorithm based on Nesterov’s optimal momentum [37]. We
then provide an analysis and compare it with other algorithms
of the same kind.

III. WLQLMS WITH MOMENTUM

For completeness, we first introduce the cost function
of the widely linear quaternion LMS (WLQLMS) [25] al-
gorithm, briefly describe how the momentum concept has
been applied in the WLQLMS in [1], and finally propose a
new WLQLMS algorithm with Nesterov’s optimal momentum,
named n-WLQLMS.

A. Problem Setting

We shall denote by yn, xn ∈ H , n = 1, ..., N the output
and input signals, respectively; then, the linear mean square
error (MSE) estimator of yn, denoted by ŷn, can be expressed
as [27], [28]

ŷn = 〈ŵ,qn〉 , ŵHqn (1)

where ŵ is an estimate of the optimal solution w, and qn is
defined as

qn = [xTn , xiTn , xjTn , xkTn ]
T

(2)

and xn = [xn, xn−1, ..., xn−M+1]
T for a filter of order M . For

a strictly linear model, qn = xn (i.e. data is circular [26]). The
goal of such an estimator is to minimize the MSE given by

Jn(ŵ) = E{‖ξn(ŵ)‖22} (3a)

ξn(ŵ) = yn − ŷn = yn − ŵHqn, (3b)

recursively, with the weight update expressed as [21]

wn = wn−1 + dnαn (4)

where dn is the descent direction, while the stepsize αn ∈ H is
non-commutative and has to post-multiply dn so as not to lead
to Sylvester’s equation which has no closed-form solution [32].
In the case of standard WLQLMS [25], eq. (3a) becomes an
instantaneous estimate, that is, Jn(ŵ) ≈ ‖ξn(ŵ)‖2 and the
descent direction will be the conjugate gradient descent, i.e.
dn = −gn|n−1 where gn|n−1 is given by

gn|n−1 , ∇ŵ∗Jn(ŵ)|ŵ=wn−1
(5)

which as a result renders eq. (4) to become wn = wn−1 +
qne

∗
nαn where αn ∈ H is an adaptive stepsize and en the a

priori error, defined as

en , ξn(wn−1) = yn −wH
n−1qn. (6)

To incorporate momentum into WLQLMS, the estimate
of eq. (3a) has to extend beyond the most recent data which
was employed in standard WLQLMS. The cost function of
interest hence becomes

Jn(ŵ) ≈
n∑
k=1

γk‖ξk(ŵ)‖22 (7)

with γk ∈ R being the weight that controls the impact of
each data sample from the past. One popular idea, employed
in RLS-type adaptive filtering [30], [31], is that the error
decreases as time goes by, so that earlier data are gradually
forgotten. Mathematically,

γk = λn−k (8)

where 0 < λ < 1 is a forgetting factor used to suppress the
effect of early data which may be no longer relevant to the
current estimate. With eq. (7) substituted into eq. (6), we have

Jn(ŵ) = ŵHRnŵ − 2R{ŵHrn}+
n∑
k=1

λn−k|yk|2 (9)

where R{·} is the real-part operator with

Rn ,
n∑
k=1

λn−kqnq
H
n = λRn−1 + qnq

H
n , (10)

rn ,
n∑
k=1

λn−kqny
∗
n = λrn−1 + qny

∗
n. (11)
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B. Extrapolation in WLQLMS

To derive the n-WLQLMS algorithm, we define the extrap-
olated weight vector, vn, as

vn , wn−1 + (wn−1 −wn−2)βn (12)

where βn > 0 is extrapolation parameter, and take the descent
direction dn as a gradient descent around vn, that is

dn , ∇ŵ∗Jn(ŵ)|ŵ=vn
= Rnvn − rn. (13)

The goal now is to find βn which yields optimal performance.
In the real-valued case, Nesterov’s momentum is shown to
give such a result [37]. Although not yet proven to produce
the same result for quaternions, we believe that this approach
provides a potential alternative to this still-emerging class of
algorithms.

To simplify the problem, we consider βn to be real-valued
so that Nesterov’s formulae can be straightforwardly applied
to quaternions as follows (for more detail, we refer to [37])

βn =
µn−1(1− µn−1)
(µn−1)

2
+ µn

(14)

with µn ∈ (0, 1), such that

(µn)
2
= (1− µn)(µn−1)2 +

(
σn
Ln

)
µn (15)

where σn = ‖λmin(Rn)‖2 (16)

and Ln = ‖λmax(Rn)‖2. (17)

The λmin(·) and λmax(·), respectively, represent the minimum
and maximum eigenvalues.

Remark 1. The key difference between m-WLQLMS in [1]
and n-WLQLMS proposed in this work is where momentum
is applied in the algorithm. In m-WLQLMS, the descent
direction is extrapolated, while in n-WLQLMS, extrapolation
is performed for the weight vector.

C. Sketch of Convergence

The rationale behind convergence analyses is to ensure
that the cost function decreases monotonically with time in a
statistical sense. In our problem, while certainly Jn(wn) <
Jn(vn), it is not guaranteed that Jn(wn) < Jn(wn−1)
because the effect of extrapolation could lead to an under-
damped trajectory [36]. Even for the non-stochastic function,
the analysis is still limited, not to mention the stochastic case.
One simple way to preclude this underdamping is to reset βn
whenever Jn(wn) ≥ Jn(wn−1). Some heuristic methods in
this direction do exist, like the gradient check [38]:

〈wn − vn,wn −wn−1〉 < 0 (18)

and contraction mapping [39]:

‖wn − vn‖2 < ε0‖wn−1 − vn−1‖2.

The equation above can be rewritten by exploiting the cost
in eq. (9), to yield the following Remark.

Remark 2. For the stepsize αn < 1/Ln, the condition
(ε0/2)‖wn −wn−1‖2 < Jn(wn−1)− Jn(wn) is satisfied if

βn <

√
1− αnε0
1− αnσn

‖wn −wn−1‖2
‖wn−1 −wn−2‖2

(19)

where ε0 is a small real number in the range (σn, Ln), ∀n.

Hence, when eqs. (18) and (19) are violated, we restart the
extrapolation by setting βn to zero. The proposed algorithm,
termed the n-WLQLMS, is summarized in Algorithm 1 below
(δ > 0 is used as a stopping criterion),

Algorithm 1: the n-WLQLMS algorithm
Input : xn, yn, M , λ and δ
Output: w

1 Initialize w0 = p0 = 0 and R0 = 0;
2 n = 0;
3 do
4 n = n+ 1;
5 Update qn according to (2);
6 ŷn − (wn−1)

H
qn;

7 en = yn − ŷn;
8 Rn = λRn−1 + ωnqnq

H
n ;

9 pn = λpn−1 + ωnqny
∗
n;

10 σn = λmin(Rn) (smallest eigenvalue);
11 Ln = λmax(Rn) (largest eigenvalue);
12 αn = 1

Ln
;

13 Find µn ∈ (0, 1) such that
(µn)

2
= (1− µn)(µn−1)2 +

(
σn

Ln

)
µn;

14 βn = µn−1(1−µn−1)

(µn−1)
2+µn

;
15 vn = wn−1 + βn(wn−1 −wn−2);
16 wn = vn − 1

Ln
(Rnvn − pn);

17 ε0 = σn

10 ;
18 if 〈wn − vn,wn −wn−1〉 < 0 or

βn ≥
√

1−αnε0
1−αnσn

‖wn−wn−1‖2
‖wn−1−wn−2‖2

then
19 µn = 1;
20 wn = wn−1 − 1

Ln
(Rnwn−1 − pn);

21 end
22 while ‖en‖ > δ or n ≤ N ;
23 wop = wn.

IV. NUMERICAL EXPERIMENTS

Simulations were conducted in MATLAB to test the n-
WLQLMS against other algorithms of akind. In the first
experiment, a widely linear quaternion moving average filter
of order 3, WLQMA(3), was run over 200 independent trials,
where the input xn was drawn from 400 samples of the
distribution N (0, 1) for each component of xn, with a SNR
of 40dB. The second experiment considers Q-improper (non-
circular) non-stationary signals generated based on Saito’s
chaotic signal. Besides the a priori error, another metric used
to compare the algorithms was the misalignment, ηn, defined
as

ηn ,
‖wn −wop‖22
‖wop‖22

. (20)

In the first experiment, the algorithm performance was con-
sidered for different values of λ. As seen in Fig. 1, both
momentum-based algorithms, m- and n-WLQLMS, converged
as fast and achieved steady-state misalignment as low as that
of widely linear quaternion RLS (WLQRLS). At λ = 0.99
and 0.91, the two algorithms behaved on par with WLQRLS,
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achieving similar convergence rate and steady-state misalign-
ment. However, for λ = 0.91, WLQRLS could not maintain
stability and diverged, while the other two algorithms con-
verged. This divergence was particularly obvious for smaller
values of λ. In other words, the m- and n-WLQLMS were more
numerically stable, owing to the absence of matrix inversion.
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Fig. 1: Misalignment of WLQRLS, m-WLQLMS and n-
WLQLMS algorithms for different λ, averaged over 200
independent trials, when employed for the identification of a
WLQMA(3) process, at an SNR of 40dB.
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Fig. 2: MSE of WLQRLS, m-WLQLMS and n-WLQLMS al-
gorithms with λ = 0.95, when employed for the identification
of Saito’s circuit through WLQAR(3) and WLQAR(6) models.

The numerical instability of WLQRLS was even more
exposed in the second experiment where Saito’s signals
were modelled by the widely linear quaternion autoregressive
(WLQAR) process of different orders in a 3-step prediction
setting. Fig. 2 shows that when the system was non-stationary
(spikes in MSE), the WLQRLS struggled to re-adjust its
weights to converge; intuitively, due to the inherent matrix
inversion, the forgetting factor, instead of ’forgetting’, kept
accumulating past erroneous data, leading to divergence. The
momentum-based algorithms, however, converged for both
WLQAR(3) and WLQAR(6) models. At the steady state, m-
WLQLMS performed better than n-WLQLMS. Fig. 3 illus-
trates the performance of WLQAR models of orders from

3 to 6 in the transient state. Observe that an increase in
the model order did not significantly increase accuracy of
prediction, while m-WLQLMS still performed slightly better.
Fig. 4 compares the original Saito’s signal with its estimates.
In the transient state, when compared to m-WLQLMS, n-
WLQLMS fluctuated less at the point of abrupt change but
was more prone to overestimation thereafter, hence yielding a
larger overall error.
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Fig. 3: Transient MSE of m-WLQLMS and n-WLQLMS with
λ = 0.95, when employed for the identification of Saito’s
circuit through WLQAR models of orders from 3 to 6.
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Fig. 4: Values of each component of Saito’s signal presented in
the original (green) and its estimates through WLQAR(3) in m-
WLQLMS (red dash) and m-WLQLMS (blue dot) algorithms
with λ = 0.95.

V. CONCLUSION

A new quaternion-valued adaptive filtering algorithm has
been proposed which exploits Nesterov’s extrapolated gradient
methods to accelerate convergence rate of the system in a
manner similar to the RLS method but more numerically
stable, due to the absence of matrix inversion. This can be
useful for non-vector, sparse or non-stationary signals. The
experiments have confirmed its advantages over WLQRLS
for non-stationary processes where WLQRLS diverges after
the state of the system changed but the proposed method
converges.
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