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ABSTRACT

We propose an efficient adaptive update method for the kernel pa-
rameters: the kernel coefficients, scales and centers. The mirror de-
scent and the steepest descent method for squared error cost function
are employed to update the kernel scales and centers, respectively.
Although the problem considered in this paper is nonconvex, we re-
duce the possibility of falling into local minima by using a novel
multiple initialization scheme to grow the dictionary without great
increases of the dictionary size. Through computer experiments, we
show that the proposed algorithm enjoys a high adaptation-capability
while maintaining a small dictionary size, without detailed tuning of
the initial kernel parameters.

Index Terms— nonlinear adaptive estimation, automatic pa-
rameter tuning, Gaussian kernel, dictionary learning

1. INTRODUCTION

A variety of signal processing problems can be cast as adaptive es-
timation of nonlinear functions. The kernel adaptive filtering has at-
tracted significant attention as an efficient online scheme for this task
[1–13]. In the kernel adaptive filtering, the target nonlinear func-
tion is modeled as an element of a reproducing kernel Hilbert space
[14, 15]. The major difficulty lies in finding an “efficient model”
(e.g., the scale (variance) parameter of the Gaussian kernel) in the
sense of reducing the estimation errors with low (or affordable at
most) complexity. If improper models are used, the kernel adaptive
filter may need a large-size dictionary, which causes slow conver-
gence. Under the use of celebrated Gaussian kernel, the efficacy
of models relies on the scales and centers of Gaussian functions.
Let us present a brief review of the selection schemes for the kernel
scales and centers. Center-selection schemes have been discussed
in terms of novelty criteria which only pick up novel data from the
input samples [3, 4]. An adaptive dictionary-refinement technique
based on the proximity operator of a weighted (block) ℓ1 norm has
been proposed in [11, 12, 16]. Regarding the kernel scales, a reason-
able scale parameter has been assumed available prior to adaptation
in the early studies of kernel adaptive filtering. This assumption is
however unrealistic, particularly when the data under consideration
are nonstationary.
Motivation: The multikernel adaptive filtering has been proposed
as a convex analytic approach with multiple different scales. The
concept of online model selection and learning has been presented
in [17, 18] based on the multikernel adaptive filtering framework, se-
lecting appropriate scales (model parameters) from a hundred of pos-
sible scales by shrinking the coefficient vector for each scale while
learning those parameters also to reduce the estimation errors simul-
taneously. Although those multikernel adaptive filtering approaches
alleviate the difficulties of kernel design, there is still sufficient room
for improvements in the sense of “efficiency” of the filter, as seen
from the following illustrative example (see also Sec. 4). Let us
consider an unknown function (the black curve in Fig. 1(a)) which
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Fig. 1. Estimating ψ by multikernel adaptive filter with Gaussian

kernels which have different scales.

is a sum of two Gaussian functions with different scales, centers,
and heights. It can be empirically shown that using many kernels
(the green dotted curves in the figure) with smaller scales than the
true ones gives a ‘good’ estimate (the red curve is the sum of those
small-scale kernels). In view of Fig. 1(b), however, more efficient
estimation with the smallest possible number of kernels (two kernels
in the figure) can be achieved if those scales which perfectly match
the target function in each local region are employed together with
appropriately located centers. This observation motivates us to adapt
the kernel scales and centers to enhance the efficiency of nonlinear
estimation.
Contributions: In this paper, we propose an efficient adaptive
method to update the three parameters: the kernel coefficients,
scales, and centers. The problem addressed in this paper is noncon-
vex in terms of those three parameters, and therefore have the issue
of local minima potentially. To reduce the possibility of falling into
local minima, the proposed algorithm initializes the kernel scales
to multiple values. To suppress sharp increases of the dictionary
size, we propose an efficient dictionary growing scheme, named
multiscale screening method, which checks the novelty of a new
sample in terms of the estimation error and the coherence at dif-
ferent scales in sequence hierarchically in the large-to-small-scale
order. The mirror descent [19] with the negative entropy is applied
to the squared error cost function to update the scale parameters for
guaranteeing the positivity of the scales, while the steepest descent
method is employed for the centers. Through computer experiments
in applications to online estimation of nonlinear systems and online
time-series data prediction using some real data, we show that (i) the
proposed algorithm enjoys high adaptation-capability while main-
taining a small dictionary size, and (ii) it is also insensitive to the
choice of initial scales.

2. PROBLEM STATEMENT

We address an adaptive estimation problem of a nonlinear system ψ
with sequentially arriving input signals u ∈ U ⊂ R

L, and its noisy
output d := ψ(u)+ν ∈ R, where u is assumed an i.i.d. random vec-
tor and ν is a zero-mean additive noise uncorrelated with any other
signals. We consider the problem of estimating the function ψ by the

following model: ϕ(r)(u) :=
∑r

j=1 hj exp

(

−
‖u−cj‖

ξj

2
)

, where

r > 0 is the expansion length, ξj > 0 are the scale parameters,
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hj ∈ R are the coefficients and cj ∈ R
L are the centers of Gaus-

sians. Here, we denote by ‖·‖ the norm induced from the canonical

inner product 〈·, ·〉 defined in R
L. ‘Efficiency’ is considered in the

present paper in terms of the expansion length r given a target preci-
sion ǫ > 0. To obtain an efficient estimate of ψ, a possible problem
formulation is given as follows:

minimize
r∈{1,2,3,··· }

r s.t. min
ϕ(r)∈Xr

E
(

ϕ(r)(u)− d
)2

≤ ǫ, (1)

where Xr := {ϕ(r) | hj ∈ R, ξj > 0, cj ∈ R
L, j = 1, · · · , r}.

Here, E denotes the expectation on U . In practice, one may need
to give an upper bound of r to keep the complexity and memory
requirements reasonable when ǫ is too small (i.e., when high pre-
cision is required). In any case, to solve (1) directly, one needs to
solve the minimization problem for many possible values of r. This
implies that some practical remedy will be required from practical
aspects. We therefore introduce an ℓ1-based sparsification approach
by extending the multikernel adaptive filtering framework.

3. PROPOSED PARAMETER ADAPTATION AND
DICTIONARY CONSTRUCTION SCHEMES

First, the basic idea and the cost function of the proposed algorithm
are presented. Second, a novel dictionary growing strategy which
constructs an efficient multiscale structure in a hierarchical manner
is presented. Third, the update schemes for the kernel coefficients,
scales, and centers are presented in sequence. Finally, relations to
prior works are presented.

3.1. Basic Idea and Cost Function

The dictionary is defined as the set

Dn := {κ(·, cj,n; ξj,n)}j=1,··· ,rn , n ∈ N (2)

of the rn-Gaussian kernels κ(u, cj,n; ξj,n) := exp

(

−
‖u−cj,n‖

ξj,n

2
)

,

u ∈ R
L, associated with the scale parameter ξj,n > 0 and the center

cj,n ∈ R
L. Our filter is defined as

ϕn(u) :=

rn
∑

j=1

hj,nκ(u, cj,n; ξj,n), u ∈ R
L, j = 1 · · · rn,

where hj,n ∈ R is the coefficient of the kernel. The filter output to
the input un is given by ϕn(un) =

∑rn
j=1 hj,nκ(un, cj,n; ξj,n) =

〈hn,κn〉 , where hn := [h1,n, h2,n, · · · , hrn,n]
T is the coefficient

vector and κn := [κ(un, c1,n; ξ1,n), · · · , κ(un, crn,n; ξrn,n)]
T.

Let α := {(hj , ξj , cj)}j=1,··· ,rn ∈ R
rn × R

rn
+ × R

L×rn be the
set of kernel parameters. Finding those parameters which construct
an efficient filter is formulated as follows:

argmin
α

E
[

(dn − ϕ(rn)(un))
2
]

+ λΩn(h), h ∈ R
rn , (3)

where Ωn(h) :=
∑rn

j=1 ωj,n |hj | is a weighted ℓ1 norm with ωj,n >
0 and λ > 0 is the regularization parameter. The weighted ℓ1 norm
suppresses the size of dictionary by sparsifying the coefficient vec-
tor hn, i.e., small coefficients are enforced to be zero and their cor-
responding atoms are discarded (see Sec. 3.3 for more details about
the role of the weighted ℓ1 norm). To approach the problem (3) in
an online manner, the cost function is defined as

Jn(α) := (dn − ϕ(rn)(un))
2 + λΩn(h). (4)

The nonconvexity of (3) implies that solutions derived by an itera-
tive algorithm, such as the well-known LMS algorithm, depend on
the initial values of the parameters α. To alleviate the sensitivity to
the initial conditions, we propose a reasonable dictionary construc-

tion scheme which is based on the notion of the multikernel adaptive
filtering in the following subsection.

3.2. Multiscale Screening: A Dictionary Growing Strategy

We empirically found that the initial kernel scales affected the per-
formance and efficiency of the filter significantly when the selected
scale was far from the scales of the target function. The idea to over-
come this issue is to reduce the possibility of falling into local min-
ima by using multiple initial values for the scale parameter. Here,
we suppose that at least some of the initial scales are close to the
correct scales. However, undesirable growths of the dictionary size
due to the use of multiple initial values may cause high computa-
tional complexities and large memory size. To avoid this, we present
an efficient dictionary growing strategy for the proposed algorithm,
named multiscale screening method, which extracts global and lo-
cal structures of the target function with the large- and small- scale
kernels, respectively.

Let ξ
(q)
init, q ∈ Q := {1, 2, · · · , Q}, be the initial kernel

scales, where ξ
(1)
init ≥ ξ

(2)
init ≥ · · · ≥ ξ

(Q)
init > 0. Fig. 2 presents

a flow chart of the multiscale screening method. The newly arriv-
ing datum un enters the first layer where it is judged whether the

largest-scale kernel κ(·,un; ξ
(1)
init) needs to be added to the dictio-

nary Dn or not by using a certain criterion presented in the next

paragraph. If κ(·,un; ξ
(1)
init) is added into the dictionary, un skips

all the following layers. If κ(·,un; ξ
(1)
init) is not added into the dic-

tionary, un goes to the second layer and it is judged whether the

second largest-scale kernel κ(·,un; ξ
(2)
init) needs to be added into

the dictionary by using the criterion at the current scale, and so
on. When the current datum un enters the dictionary at the qth

scale, then we let (hrn+1,n, ξrn+1,n, crn+1,n) := (0, ξ
(q)
init,un) and

κ(·, crn+1,n; ξrn+1,n) is added to Dn.
The proposed criterion consists of the error and coherence con-

ditions in a hierarchical manner. Roughly speaking, when the er-
ror is large, a large-scale kernel is needed to extract a global struc-
ture. When the error is small, on the other hand, a small-scale kernel
is needed to extract a local structure. The error condition for the
qth scale is given by |en| > ǫ(q), q ∈ Q for some small constant

ǫ(1) ≥ ǫ(2) ≥ · · · ≥ ǫ(q) > 0, where en := dn − ϕn(un) is the
instantaneous error. If the error condition is satisfied, the filter needs
to be updated in the vicinity of un with the qth scale. To eliminate
the redundancy from the dictionary, the coherence condition [4]

coherence(q) := max
j=1,··· ,rn

∣

∣

∣κ(un, cj ; ξ
(q)
init)

∣

∣

∣ ≤ δ(q), q ∈ Q

is used for some prespecified threshold δ(q) ∈ (0, 1).

3.3. Adaptation of Kernel Coefficients and Dictionary Pruning

To minimize the time varying cost function (4) about the coeffi-
cients hn in an online way, we employ the adaptive proximal for-
ward backward splitting (APFBS) algorithm [20]. The basic idea is
using the gradient to reduce the smooth term and using the proxim-
ity operator to reduce the nonsmooth one. The proximity operator
proxλΩ : Rrn → R

rn of Ω of index λ is defined as proxλΩn
(x) :=

argmin
y∈Rrn

(

λΩn(y) +
1
2
‖x− y‖2

)

, x ∈ R
rn of which the

ith component is [proxλΩn
(x)]i = max

{

1−
λωi,n

|xi|
, 0
}

xi. The

coefficient vector is updated as

hn+1 := T
{

proxλΩ

(

hn + µ(h)(dn − h
T

nκn)κn

)}

, (5)

where µ(h) ∈ [0, 2] is the stepsize parameter, and the operator
denoted by T is of decreasing the size of vector by removing zero
components, i.e., size (T (x)) = |{i ∈ {1, 2, · · · , rn} | xi 6= 0}|
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Fig. 2. A flow chart of the multiscale screening method for efficient

dictionary growing.

for x := [x1, x2, · · · , xrn ]
T. The corresponding dictionary el-

ements are also removed from the dictionary, i.e., Dn+1 :=
Dn/κ(·, cj,n; ξj,n), if hn+1,j = 0.

3.4. Adaptation of Kernel Scales

The policy of updating the scale parameter ξj,n is to suppress the
cost Jn on the space R+ of positive real numbers. To restrict the
scale parameter ξj,n to R+, we employ the mirror descent method
[19] with the negative entropy for the squared error cost Jn to update
ξj,n. The mirror descent method updates ξj,n as

ξj,n+1 = argmin
ξ∈R+

{

〈

ξ,
∂Jn(αn)

∂ξj

〉

+
Bφ(ξ||ξj,n)

µ
(ξ)
j,n

}

, (6)

where αn := {(hj,n, ξj,n, cj,n)}j=1,··· ,rn , Bφ(ξ||ξj,n) := φ(ξ)−
φ(ξj,n) − 〈∇φ(ξj,n), ξ − ξj,n〉 is a Bregman-divergence with the

continuous convex function φ(x) := x log x−x, x > 0, and µ
(ξ)
j,n =

ξj,nµ
(η) for some small constant µ(η) > 0 is the stepsize parameter

(see Remark below). The partial differential in (6) is given by

∂Jn(αn)

∂ξj
= −

2enhj,n ‖un − cj,n‖
2 κ(un, cj,n; ξj,n)

ξ2j,n
. (7)

Differentiating the right side of (6), substituting ∇φ(x) = log x
and letting the derivative be zero, we obtain the following update
equation:

ξj,n+1 = exp

(

log(ξj,n)− µ
(ξ)
j,n

∂Jn(αn)

∂ξj

)

. (8)

Remark on the stepsize µ
(ξ)
j,n: The update (8) can also be attained

through the update for the dual variable η := ∇φ(ξ) := log ξ un-
der the Legendre transform ∇φ : R+ → R, for which the inverse

transform is given by (∇φ)−1(η) := ∇φ∗(η) = eη , where φ∗ is the
Fenchel-Legendre conjugate of φ [21]. If we regard Jn as a function
of the dual variables ηj,n := log ξj,n with the other parameters fixed
to hn and cj,ns, the steepest descent update is given by

ηj,n+1 = ηj,n−µ
(η) ∂Jn(αn)

∂ηj
= ηj,n−µ

(η)ξj,n
∂Jn(αn)

∂ξj
, (9)

where the second equality is due to
∂Jn(αn)

∂ηj
= ∂Jn(αn)

∂ξj

∂ξj
∂ηj

=

ξj
∂Jn(αn)

∂ξj
. By transforming the update equation (9) back to the
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Fig. 3. Results of Experiment 1.
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Fig. 4. Results of Experiment 2.

ξ domain by the inverse mapping (∇φ)−1, we obtain (8) with the

stepsize µ
(ξ)
j,n = ξj,nµ

(η).

3.5. Adaptation of Kernel Centers

The update of kernel centers cj,n is derived by using the stochastic
gradient descent method for Jn. The update is given as

cj,n+1 = cj,n − µ(c) ∂Jn(αn)

∂cj
, (10)

where µ(c) > 0 is the stepsize parameter and

∂Jn(αn)

∂cj
= −

4enhj,nκ(un, cj,n; ξj,n)(un − cj,n)

ξj,n
. (11)

We finally remark that the computational complexity of the pro-
posed algorithm is linear with respect to the dictionary size rn.

3.6. Relations to Prior Works
In the kernel adaptive filtering context, some related works have been
proposed to adapt the kernel scales [22–24] and centers [25, 26] in
the dictionary to minimize the squared error. The method in [22]
updates the scales only when each kernel enters the dictionary and
keeps those scales unchanged after that. Its performance is there-
fore rather limited. The method proposed in [23] uses a common
scale parameter for all kernel functions. The method in [24] updates
both scales and centers individually, as in the way of the proposed
approach. The key difference is however that the method in [24]
does not explicitly care the nonconvexity of the problem and ini-
tializes the scales of kernels to a single value. As will be shown in
Section 4, this type of simple initialization strategy causes a serious
tradeoff between the accuracy of estimation and the computational
complexity. In contrast, the proposed approach yields a reasonably
high estimation accuracy with a reasonable complexity for a wide
range of initial conditions.

4. SIMULATION RESULTS

We show the efficacy of the proposed algorithm for system identi-
fication problems of two toy examples and a time series prediction
problem of four real data. For the proposed algorithm, the dictio-
naries are constructed by the multiscale screening method presented
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Fig. 5. Results of Experiment 3. Data 1: temperature, Data 2: humidity, Data 3: pressure, and Data 4: visibility.

in Sec. 3.2, and ωj,n := (|hj,n| + β)−1 [27] with β = 10−4 is
employed to the weighted ℓ1 norm.

Experiment 1: A Basic Performance of the Proposed Algorithm

We consider the following nonlinear functionψ(u) = 3e−30(u−2.5)2

−5e−40(u−5)2 + 2e−50(u−7.5)2 + 2e−0.25(u−4)2 , u ∈ R, which
is the sum of four Gaussian functions. The observed signal is gen-
erated as dn := ψ(un) + vn, n ∈ N, where un is the input data
randomly generated from a uniform distribution within the region

[0, 10] and vn ∼ N (0, 1.0 × 10−2) is the additive white Gaussian
noise.

To verify that the proposed algorithm adapts the kernel scale
and center efficiently, the performance of the proposed algorithm is
evaluated, and compared with the performance of the proposed al-
gorithm without the adaptation of the kernel scales and centers. For
the proposed algorithm with the adaptation of the kernel parame-

ters, the three initial kernel scales ξ
(1)
init = 10, ξ

(2)
init = 1/5, and

ξ
(3)
init = 1/100 are roughly chosen, so that the range [ξ

(3)
init, ξ

(1)
init] in-

cludes all the Gaussian scales of the target function, and ξ
(2)
init is the

middle value of [ξ
(3)
init, ξ

(1)
init]. For the algorithm without the adapta-

tion, ξ
(1)
init = 1, ξ

(2)
init = 1/10, and ξ

(3)
init = 1/50 are chosen so that

the algorithm achieves the best performance. The stepsizes and the
regularization parameters of the proposed algorithm with the adap-
tation are chosen so that the dictionary size is close to the number of
the Gaussians of the target and the steady-state MSE becomes as low
as possible. The parameters for the algorithm without the adaptation
are chosen so that the convergence rate of the MSE is almost same
as the algorithm with the adaptation.

Fig. 3 depicts (a) the MSE and (b) the maximal dictionary size,
and (c) the steady-state dictionary size averaged over 100 runs.
The algorithm with the adaptation of the kernel scales and centers
(Proposed) is superior to the algorithms without the adaptation (w/o
adaptation of ξ and c) in the sense of both the MSE and the dictio-
nary size. This result shows the effectiveness of adapting the kernel
parameters.

Experiment 2: Insensitivity to the Choice of Initial Kernel Scales

We consider the nonlinear functionψ(u) = e
−

(u−4)2

ξ∗ −0.5e
−

(u−6)2

ξ∗ .
with ξ∗ = 1. The observed signal is generated as dn := ψ(un)+vn,
n ∈ N, where un is the input data randomly generated from a uni-
form distribution within the region [0, 10] and vn ∼ N (0, 1.0 ×
10−2) is the additive white Gaussian noise.

To verify the proposed algorithm is insensitive to the selection of
initial kernel scales, we demonstrate estimation performances of the
proposed algorithm while varying the initial kernel scales, and com-
pare the performance with a state-of-the-art algorithm that adapts the
kernel scales and centers with single initial values [24] (see Sec. 3.6).
For the single initialization algorithm, the following two settings of
the kernel scales are considered: (small) ξinit = ξ∗/∆ξ and (large)

ξinit = ξ∗∆ξ with ∆ξ = 100, 101, 102, 103, and 104. For the
proposed algorithms, the performance under the following two ini-

tial scales are tested: ξ
(1)
init = ξ∗∆ξ and ξ

(2)
init = ξ∗/∆ξ with ∆ξ

defined above.

Fig. 4 illustrates the results of the experiment 2: (a) the MSEs,
(b) the maximal and (c) the steady-state dictionary sizes averaged
over 100 runs. From Fig. 4(a), one can see that the single initial-
ization algorithm (large) attains the poor performance when ξinit
is large. Although the single initialization algorithm (small) is in-
sensitive to the choice of ξinit, the dictionary size greatly increases
when ξinit is large, as illustrated in Fig. 4(b). On the other hand, the

proposed algorithm is insensitive to the choice of [ξ
(1)
init, ξ

(2)
init] in the

sense of both the MSE and the dictionary size.

Experiment 3: Real Data
We demonstrate the performance of the proposed algorithm in an
application to online prediction of the following four data from the
appliances energy prediction dataset which are available in UCI Ma-
chine Learning Repository [28]:
data 1: Temperature in kitchen area [Celsius]
data 2: Humidity in kitchen area [Celsius]
data 3: Pressure (from Chievres weather station) [mm Hg]
data 4: Visibility (from Chievres weather station) [km]

Each datum dn is predicted withun := [dn−1, dn−2, · · · , dn−L]
T ∈

U ⊂ R
L for L = 8. The proposed algorithm is compared with the

kernel normalized least mean square (KNLMS) algorithm with ℓ1
regularization [16], which is a benchmark algorithm in the field
of kernel adaptive filtering, and the single initialization algorithm
which have appeared in Experiment 2. For the proposed algorithm,

the following three initial kernel scales are employed: ξ
(1)
init = 1,

ξ
(2)
init = 0.1, and ξ

(3)
init = 0.01. For the single initialization algo-

rithm, the following three settings are tested: (i) ξinit = 1, (ii)
ξinit = 0.1, and (iii) ξinit = 0.01, and then the value which attains
the lowest MSE is chosen. For KNLMS, the kernel scale is chosen
as ξ = 1/50, 1/10, 1/6, 1/6 for the data 1, 2, 3, 4, respectively,
so that the algorithm achieves the best performance. Each algorithm
operates a single run over the data. Fig. 5 summarizes the result: (a)
the MSEs, (b) the maximal dictionary sizes, and (c) the mean dictio-
nary sizes. The MSEs and the mean dictionary sizes are computed
by averaging over all the iterations. We note that the dictionary sizes
of all algorithms change dynamically.

It can be seen from Fig. 5 that the MSEs of the proposed algo-
rithm are smaller than those of KNLMS and the single initialization
algorithm for all data. Although the maximal dictionary sizes of the
proposed algorithm is larger than KNLMS for data 2 and 3, the mean
and steady-state dictionary sizes are smaller than KNLMS and the
single initialization algorithm for all data, thanks to the adaptation
of kernel parameters and the multiscale screening method.

5. CONCLUSION

This paper proposed an efficient kernel adaptive filtering algorithm.
The proposed algorithm adapted the kernel parameters to construct
an efficient filter. To avoid to fall into local minima, we presented
a novel dictionary growing scheme, named the multiscale screening
method. The multiscale screening method reduced the sensitivity
for the initial kernel scales while maintaining small dictionary size.
Numerical examples showed efficacy of the proposed algorithm with
the insensitivity to the initial kernel parameters.
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