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ABSTRACT

Set-membership affine projection (SM-AP) adaptive filters
have been increasingly employed in the context of online
data-selective learning. A key aspect for their good perfor-
mance in terms of both convergence speed and steady-state
mean-squared error is the choice of the so-called constraint
vector. Optimal constraint vectors were recently proposed
relying on convex optimization tools, which might some-
times lead to prohibitive computational burden. This paper
proposes a convex combination of simpler constraint vectors
whose performance approaches the optimal solution closely,
utilizing much fewer computations. Some illustrative ex-
amples confirm that the sub-optimal solution follows the
accomplishments of the optimal one.

Index Terms— adaptive filtering, set-membership, affine
projection, combination of adaptive filters, optimization

1. INTRODUCTION

Adaptive filters incorporating data-selection are attracting
growing interest thanks to their ability to reduce the compu-
tational load of learning processes [1–12]. Set-membership
affine projection (SM-AP) algorithms [4] are among success-
ful examples within the data-selective class of adaptive filters.
The incoming data is evaluated before implementing a new
update of the parameter vector associated with the adaptive
filter, and for that, each SM-AP algorithm requires a con-
straint vector (CV) to compute the parameter vector when
updating [13].

The original SM-AP algorithm [4] uses the so-called sim-
ple choice CV (SC-CV), which is usually the preferred choice
in many variations of the SM-AP algorithm—see, for in-
stance, [5]. In addition to the computational simplicity, such a
preference is justified by the good steady-state mean-squared
error (MSE) performance induced by the SC-CV [14]. Other
heuristically chosen CVs include fixed modulus error-based
CV (FMEB-CV) [15–17] and exponential decay CV (ED-
CV) [17, 18]. Besides the good convergence speed and low
computational burden induced by those closed-form CVs, the

heuristics employed to define them find reasonable geometri-
cal justification—see, for instance, [17].

SM-AP algorithms employing heuristic CVs (such as SC-
CV, FMEB-CV, and ED-CV) generally do not solve the orig-
inal SM-AP optimization problem. Indeed, the SM-AP up-
dating process should, in principle, lead to parameter vectors
that correspond to the closest points to a polytope defined by
pairs of input and desired signals. Instead, most heuristic CVs
lead to parameter vectors lying on the closest boundary of
the aforementioned polytope, thus weakening the original op-
timization problem by replacing “the closest point” with “a
point belonging to the closest boundary”. The work [19] was
the first to solve the original SM-AP optimization problem
by proposing an optimal CV, which is the solution to a box-
constrained strictly convex quadratic problem. The work [20]
further extended the results from [19] to the set-membership
proportionate affine projection algorithm (SM-PAPA) [21].

Although the optimal CVs proposed in [19,20] can be ap-
plied in a variety of applications, their corresponding compu-
tational burden is much higher than the heuristic CVs’. This
can be a big issue, particularly in those online applications
where the rate of data acquisition is really high, severely con-
straining the time to perform the computations between suc-
cessive updates. The main goal of this work is to join the
heuristic and the optimal approaches in order to yield sub-
optimal solutions that are easy to compute with few numer-
ical operations while also preserving the good properties of
the optimal solution. This goal is accomplished via a con-
vex combination of two heuristic CVs (e.g., SC-CV and ED-
CV) with an optimized weight following the methodology
employed by the optimal CV in [19, 20].

This work is organized as follows. Section 2 describes
the SM-AP algorithm, including its variant SM-PAPA; the
closed-form expressions for the heuristic CVs and the con-
vex optimization problem underlying the calculation of the
optimal CVs are also provided. Section 3 contains the main
proposal of this paper: the closed-form expression for the op-
timal convex combination of CVs; it is also shown the equiv-
alence of this approach to the well-known convex combina-
tion of adaptive filters, and some remarks are made related
to the computational complexity of the proposal. Section 4
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describes a comprehensive set of simulation results assess-
ing the performance of the sub-optimal proposal and compar-
ing it against heuristic and optimal approaches in a variety of
scenarios and considering different figures of merit, such as
MSE, misalignment, convergence speed, and percentage of
updates. Some concluding remarks are drawn in Section 5.

2. SET-MEMBERSHIP AFFINE PROJECTION

The affine projection (AP) algorithm can be thought as a gen-
eralization of the normalized least-mean squares (NLMS) al-
gorithm when low computational complexity and fast conver-
gence are both required [13]. The generalization is obtained
by reusing input data vectors from previous iterations. Further
reduction of the computational burden is achieved when AP
employs a data-selective scheme based on set-membership
(SM), while maintaining or even increasing the convergence
speed [4].

Let the parameter vector of the adaptive filter at iteration
k ∈ N be w(k) ∈ RN+1, where N ∈ N is the order of
the filter. Let also x(k) ∈ RN+1, d(k), and e(k) ∈ RL+1

denote the input, desired, and error vectors, where L ∈ N
is the data-reuse factor. One can then build the input matrix
X(k) ∈ R(N+1)×(L+1), whose lth column is x(k − l), with
l ∈ L , {0, 1, · · · , L}; these variables are related as follows:
e(k) = d(k)−XT(k)w(k). The first entry of the error vector
e(k) is called a priori error and denoted as e0(k). The SM
strategy is implemented by comparing the magnitude of the a
priori error with a predefined threshold γ̄ ∈ R+. By denoting
the CV as γ(k) ∈ RL+1, which must satisfy ‖γ(k)‖∞ ≤ γ̄,
one can write the SM-PAPA recursion as [21]

w(k+1)=

{
w(k)+G(k)X(k)S(k)[e(k)− γ(k)], |e0(k)|>γ̄,
w(k), otherwise,

(1)

where G(k) ∈ R(N+1)×(N+1) is a diagonal proportionate
matrix chosen as in [21], S(k) ,

[
XT(k)G(k)X(k) + δI

]−1
∈ R(L+1)×(L+1), and δ ∈ R+ is a regularization factor used
to avoid numerical issues due to matrix inversion. Note that
S(k) is a positive-definite matrix. The standard SM-AP [4,13]
algorithm results from setting G(k) as the identity matrix.

The definition of the CV γ(k) determines the convergence
behavior of the algorithm. By using geometrical reasoning,
it is possible to conceive different CV definitions [17]. The
following ones describe the main heuristic choices, namely:
SC-CV, ED-CV, and FMEB-CV. In these definitions, it is as-
sumed that the lth entry of vectors γ(k) and e(k) are respec-
tively denoted as γl(k) and el(k), for all l ∈ L.

Definition 1 (SC-CV). The SC-CV proposed in [4] and ana-
lyzed in [14] is defined as

γl(k) ,

{
γ̄ sign [el(k)] if l = 0,

el(k) for l ∈ L \ {0}.
(2)

Definition 2 (ED-CV). The ED-CV proposed in [17] requires
that γ̄ ≤ 1 and is given by

γl(k) , γ̄l+1 sign [el(k)] , for l ∈ L. (3)

Definition 3 (FMEB-CV). The FMEB-CV proposed in [15]
and analyzed in [16] is defined as

γl(k) , γ̄ sign [el(k)] , for l ∈ L. (4)

The work in [19] (respect. [20]) solved the original SM-
AP (respect. SM-PAPA) problem considering that both the
parameter vector and the CV are optimization variables. In
this context, the optimal CV is defined as follows.

Definition 4 (Optimal CV). The optimal CV proposed in [19,
20] is obtained by solving the following strictly convex box-
constrained quadratic problem:

minimize
γ(k)

[γ(k)− e(k)]TS(k)[γ(k)− e(k)],

subject to ‖γ(k)‖∞ ≤ γ̄.
(5)

3. PROPOSED CONVEX COMBINATION OF CVS

Although the optimal CV can be numerically computed by
solving the convex problem in Definition 4 within an (L+1)-
dimensional space, using it induces a higher computational
burden to online systems. Therefore, solving such an opti-
mization problem could be unrealistic in applications working
at high data rates. A compromise solution can be achieved by
mixing the heuristic closed-form strategies in Definitions 1, 2,
or 3 with the convex optimization strategy in Definition 4 to
come up with sub-optimal CVs by performing a search on
a one-dimensional subspace, entailing a lower computational
complexity. This can be achieved by considering convex com-
binations of closed-form CVs, as in the following definition.

Definition 5 (Convex combination — CC). Given two CVs
γa(k),γb(k) ∈ RL+1, their convex combination is

γc(k) = αkγa(k) + (1− αk)γb(k), αk ∈ [0, 1] . (6)

Notice that γc(k) is itself a CV. Indeed, as both γa(k),
γb(k) belong to the ball {γ ∈ RL+1 | ‖γ‖∞ ≤ γ̄}, which
is a convex set, then any convex combination of them also
belongs to the infinity-norm ball, making γc(k) a valid CV
associated with the predefined error threshold γ̄.

The proposed sub-optimal CV is the optimal CC of two
predefined CVs, as detailed in the following definition.

Definition 6 (CC-CV). Given two CVs γa(k) 6= γb(k) ∈
RL+1, the convex combination constraint vector (CC-CV) is

γCC−CV(k) = α∗kγa(k) + (1− α∗k)γb(k) , (7)

in which α∗k is the solution to the optimization problem

minimize
0≤αk≤1

[γc(k)− e(k)]
T
S(k) [γc(k)− e(k)] ,

subject to γc(k) = αkγa(k) + (1− αk)γb(k) .
(8)
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The optimization problem in (8) admits a closed-form so-
lution as follows.

Proposition 1 (Optimal weight). Given the number

βk =
[e(k)− γb(k)]TS(k)[γa(k)− γb(k)]

[γa(k)− γb(k)]TS(k)[γa(k)− γb(k)]
, (9)

the solution to the optimization problem in (8) is

α∗k = βk [u(βk)− u(βk − 1)] + u(βk − 1), (10)

where u(·) is the standard unit-step function.

Proof. One can replace the equality constraint in (8) into the
cost-function to get the convex quadratic function

C(αk) =α2
k[γa(k)− γb(k)]TS(k)[γa(k)− γb(k)]

+ 2αk[γb(k)− e(k)]TS(k)[γa(k)− γb(k)]

+ [γb(k)− e(k)]TS(k)[γb(k)− e(k)],
(11)

which must be minimized for αk ∈ [0, 1]. Notice that
C(βk) ≤ C(αk) for all αk ∈ R. Thus, when βk ∈ [0, 1],
then α∗k = βk is the solution to the problem in (8). If βk < 0,
then C(αk) is a monotonic increasing function within the
interval [0, 1], since it lies entirely on the right branch of the
parabola. Therefore, the solution to (8) is α∗k = 0. Similarly,
for βk > 1, the solution to (8) is α∗k = 1.

The next result shows that using an SM-AP filter along
with the proposed CC-CV is equivalent to convexically com-
bining two SM-AP filters as follows.

Proposition 2. An SM-AP filter using the proposed CC-CV
in (7) is equivalent to the convex combination of two SM-AP
filters, one of them with CV γa(k), and the other with γb(k).

Proof. As presented in [22], the coefficient vector w(k) of
the convexically combined adaptive filter is given by

w(k) = λkwa(k) + (1− λk)wb(k), (12)

where λk ∈ [0, 1]. Assume that both wa(k) and wb(k) are
updated by an SM-AP algorithm, with different CVs γa(k)
and γb(k). Then, wz(k+ 1) = wz(k) +X(k)S(k)(ez(k)−
γz(k)), z ∈ {a, b}. By using (12) and considering the equiv-
alent error as the convex combination of the errors as in [22],
i.e. e(k) = λkea(k) + (1− λk)eb(k), then

w(k + 1) = w(k) + X(k)S(k)[e(k)− γc(k)], (13)

for λk = α∗k.

The result in Proposition 2 does not hold for the SM-
PAPA proposed in [21]. Indeed, different parameter vectors
induce different proportionate matrices, breaking the symme-
try of some terms in the expression for the convex combina-
tion in (12). Nonetheless, one could employ a unified strategy

for forming the proportionate matrices appearing in each filter
so that they are equal. If this modification is considered, then
Proposition 2 would also hold for the convex combination of
SM-PAPA filters.

The optimal CV for the SM-AP proposed in [19] is
usually implemented via interior-point methods. As dis-
cussed in [23], the computational complexity of common
interior-point methods are in-between O

{
(L+ 1)3.5

}
and

O
{

(L+ 1)4
}

. In [20], the gradient projection (GP) method
is used, which presents a lower computational complexity of
O
{

(L+ 1)3
}

, as shown in [24]. The proposed CC-CV re-
quires an even lower computational complexity for its compu-
tation in the order of O

{
(L+ 1)2

}
, which is the complexity

for computing βk in (9). The complexity of computing any of
the heuristic CVs presented in Definitions 1-3 is negligible,
as it involves only trivial multiplications (no multiplication is
needed and the sign of a precomputed parameter is adjusted).

4. SIMULATION RESULTS

The proposed CC-CV in Definition 6 is tested in a system
identification scenario considering that γa(k) is the SC-CV
of Definition 1 and γb(k) is the ED-CV of Definition 2. This
combination is tested and compared with the optimal CV of
Definition 4 as well as to both the pure SC-CV and pure ED-
CV versions of the SM-AP and SM-PAPA.

In all simulated scenarios, a measurement noise with vari-
ance σ2

n = 10−3 is added to the clean desired signal. In addi-
tion, 4000 input samples are filtered through a 16-tap finite-
impulse response system to be identified in R = 1000 inde-
pendent Monte-Carlo runs. Three different experiments are
considered:

• Exp. 1: a 4th-order autoregressive unit-power input sig-
nal, denominated here as AR(4) input, is generated by
the response of a recursive filter to a white input, i.e.:
x(k) = 0.95x(k − 1) + 0.19x(k − 2) + 0.09x(k −
3)− 0.5x(k− 4) +w(k), where w(k) is the realization
of a white random sequence. The unknown system re-
sponse is h(k) = [h0(k) · · ·h15(k)]T, which models a
dispersive setup given as

– k < 800: hm(k) = 1, for m ∈ {0, 1, . . . , 15};
– k ≥ 800: hm(k) = 2, for m ∈ {0, 1, . . . , 7},

whereas hm(k) = 1, for m ∈ {8, 9, . . . , 15}.

• Exp. 2: the AR(4) signal of Exp. 1 is the input of a
sparse system h(k) defined as

– k < 800: hm(k) = 10−4, form ∈ {0, 1, . . . , 15}\
{3}, and h3(k) = 1;

– k ≥ 800: hm(k) = 10−4, form ∈ {0, 1, . . . , 15}\
{3, 10}, and h3(k) = h10(k) = 1.

• Exp. 3: a unit-power white random sequence is the
input of the same sparse system of Exp. 2.
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Fig. 1. MSE for: (a) Exp. 1; (b) Exp. 2; (c) Exp. 3.

The setup of a white input for a dispersive system is not
considered, since it is known that the SC-CV is asymptoti-
cally optimal for this case [19].

The SM-AP algorithm (employed in Exp. 1) and the SM-
PAPA (employed in Exps. 2 and 3) use L = 3 as the reuse
factor for all CVs. In addition, the error threshold is given as
γ̄ =

√
4σ2

n, the regularization factor is δ = 5 · 10−7, and the
coefficients are initialized as w(0) = 0 ∈ R16.

Three figures of merit are considered: (i) MSE, defined as:

MSE(k) = 1
R

R∑
r=1

e20,r(k), where e0,r(k) is the a priori error

of the rth Monte-Carlo run; (ii) misalignment [17, 19], de-

fined as Mis(k) = 1
R

R∑
r=1

‖wr(k)−h(k)‖22
‖wr(k)‖22

, where wr(k) is the

parameter vector for the rth Monte-Carlo run; and (iii) overall
percentage of updates.

Fig. 1(a) shows the MSE results for Exp. 1. It is clear
that the SM-AP algorithm working with the proposed CC-
CV is able to achieve fast convergence, similarly to SC-CV
and ED-CV, and faster than the optimal CV. In addition, the
steady-state MSE is lower than both SC-CV and ED-CV, be-
ing rather close to the steady-state MSE of the optimal CV.
Fig. 2 depicts the misalignment results for Exp. 1. One can
see that the proposal finds a good compromise between con-
vergence speed for the misalignment and the steady-state mis-
alignment, being much faster than the optimal.
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Fig. 1(b) shows the MSE results for Exp. 2. These re-
sults let clear that the SM-PAPA working with the CC-CV
achieves near-optimal performance, outperforming both SC-
CV and ED-CV. Fig. 1(c) shows the MSE results for a unit-
variance white input. Note that the MSE curves of SC-CV,
optimal CV, and the proposed CC-CV are virtually identical.

Table 1 shows the percentage of updates for all three ex-
periments. Note that both the optimal CV and the proposed
CC-CV update much less than the SC-CV and ED-CV.

Table 1. Overall percentage of updates
CV Exp. 1 Exp. 2 Exp. 3

Optimal 16.7% 11.9% 08.5%
SC 23.2% 19.9% 09.0%
ED 30.9% 28.8% 16.2%
CC 16.5% 13.6% 08.6%

5. CONCLUSIONS

In this paper we proposed an efficient way to determine the
constraint vector in set-membership affine projection (SM-
AP) adaptive algorithms whose performances match closely
the optimal solution. The proposal consists of an optimal con-
vex combination of two predefined constraint vectors. The re-
sulting sub-optimal solution can be computed in closed-form,
requiring low computational complexity. It is shown that us-
ing an SM-AP algorithm along with the proposed constraint
vector is equivalent to using a combination of two SM-AP
filters, each one employing the predefined constraint vectors
that were initially used for the convex combination. The sim-
ulation results in dispersive and sparse scenarios demonstrate
the near-optimality of the proposed solution.
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