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ABSTRACT

In order to accommodate for modern adaptive filtering applications,
the classic adaptive filtering paradigm is considered from a more
general perspective. The new formulation allows for time dependent
variations in the state of the system and more importantly it relaxes
the Gaussian assumption to the generalized setting of α-stable dis-
tributions. In this work, based on the principles of gradient descent
and fractional-order calculus, a cost-effective technique for tracking
the state of such a system is derived. For rigour, performance of the
derived filtering technique is analyzed and convergence conditions
are established.

Index Terms— α-stable signals, fractional-order calculus,
fractional-order filtering, adaptive filtering/tracking.

1. INTRODUCTION

In order to accommodate for mathematical tractability, the over-
whelming majority of stochastic machine learning, signal process-
ing, and control techniques assume a Gaussian model for the signal
and noise [1–3]. However, in a growing number of modern appli-
cations, the encountered signal/noise exhibits sharp spikes which re-
sults in distributions that decay slower than the Gaussian case [4–
11]. Owing to their signature stable property [4] and the general-
ized central limit theorem [12], accurate modeling of such signals
has been shown to be possible through the framework of α-stable
random processes [4–8].

The class of real-valued α-stable random processes with ellipti-
cally symmetric distributions, hereafter referred to as symmetric α
stable (SαS), have characteristic function of the form [13,14]

Φz(s) = E
{
eis

Tz
}
= eis

Tξe−(
1
2
sTΓzs)

α
2 (1)

where Φz(·) is the characteristic function of z, i2 = −1, (·)T de-
notes the transpose operator, and E {·} denotes the statistical expec-
tation operator, while the positive definite matrix Γz determines the
elliptical shape of the distribution of z that is centered at ξ. The
characteristic exponent α ∈ (0, 2] in (1) governs the tail heaviness
of the density function [8,13]. Small values of α correspond to se-
vere impulsiveness, resulting in heavier tails, while values close to
2 correspond to more Gaussian type behavior. For the special case
when α = 2, random vector z has a Gaussian distribution with the
covariance matrix Γz and mean vector ξ.
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From the entire class of α-stable random processes, only the
Gaussian case has well-defined second and higher-order statistical
moments [12,13]. Indeed, excluding the Gaussian case, SαS random
processes have only finite statistical moments of orders strictly less
than α [8,12,13]. Therefore, when it comes to filtering solutions, it
is implicitly implied that α ∈ (1, 2], so that conditional expectations
can be established. Without loss of generality, this work is limited to
real-valued SαS random processes with α ∈ (1, 2], where ξ in (1)
corresponds to the mean vector.

The restriction to finite statistical moments of order less than α
hinders the effectiveness of classical filtering techniques when ap-
plied to general SαS signals [15–19], as these techniques are usu-
ally based on minimizing the second-order moment of an error mea-
sure. To this end, a number of filtering techniques have been devel-
oped for processing α-stable signals [5,16,18,20,21]. These filtering
techniques typically aim to minimize a fractional norm of the error
measure. However, their use of ordinary calculus results in filtering
techniques that are not cost-effective and/or do not have analytically
tractable behavior, prohibiting the establishment of closed-form con-
vergence criteria. Notable recent developments in this area include
the particle filtering technique in [15], which is based upon tracking
parameters of the characteristic function in (1) and presents a so-
lution for tracking SαS state vector sequences. Furthermore, the
authors of this work have formulated a gradient-descent adaptive
filtering technique in [19], based on fractional-order calculus and
statistics [22–24]. More importantly, using the characteristic func-
tion of SαS processes an optimal filtering solution was also estab-
lished in [19].

In order to present an all-inclusive adaptive filtering solution,
the problem of tracking the state of a dynamic system, where the
dynamic system itself is only observable through SαS input/output
signals, is considered. Then, an adaptive solution based on minimiz-
ing fractional-order norms of an error measure in a gradient descent
manner is derived. The introduced adaptive filter is cost-effective to
implement and is applicable to a wide range of estimation/tracking
scenarios. Moreover, in incidences limited to the Gaussian case and
given a number of simplifying assumptions, the proposed adaptive
filtering technique can be simplified to classical approaches. Fur-
thermore, performance of the derived adaptive filtering algorithm is
analyzed and requirements for its convergence are established. Fi-
nally, the introduced concepts are verified through simulations.
Mathematical Notations: Scalars, column vectors, and matrices are
denoted by lowercase, bold lowercase, and bold uppercase letters,
with I representing the identity matrix of appropriate size. The
transpose and statistical expectation operators are denoted by (·)T
and E {·}, while ⊗ denotes the Kronecker product. The operator
vec {·} transforms a matrix into a vector by stacking its columns.
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Finally, (·)〈τ〉 denotes the element wise implementation of the func-
tion f(z) = |z|τ sign(z), with sign(·) denoting the sign function.

2. PROBLEM FORMULATION

The goal is to track the state of a given system through observation
of its input/output signals. The state of the system at time instant n
is represented via parameter matrix Hn, while the input and output
signals are interrelated as

yn = Hnxn + wn (2)

where at time instant n, yn and wn denote the output and back-
ground noise vectors, with xn representing the regression vector
used to identify the system. The system in question is considered
to be time variant with internal dynamics modeled as

Hn = AHn−1 + Vn (3)

where A is a matrix representing the deterministic system evolution
and {Vn : n = 1, 2, . . .} is an SαS matrix sequence representing
random system mutations. The random processes {xn,wn,Vn} are
assumed to be mutually and temporally independent with zero-mean.
Remark 1: Although the models in (2)-(3) are considered to be linear
and the system evolution matrix A is taken to be time invariant for
brevity and simplicity in presentation, the introduced concepts can
be readily generalized.
Remark 2: If all random sequences are considered to be Gaussian
and the system is assumed to be time invariant, that is, Hn → H;
then, the problem in this work simplifies to that considered in [25,
26], which leads to the standard least mean square (LMS) algorithm.
Remark 3: Given the simplifying assumptions that all random se-
quences are Gaussian and the system is directly accessible via a lin-
ear observer; then, the problem in this work simplifies to that con-
sidered by Kalman in [27] which leads to the standard Kalman filter.

3. THE PROPOSED FRACTIONAL-ORDER FILTER

Let ŷn denote the estimate of yn that is obtained through the strictly
linear model

ŷn = Ĥn|n−1xn with Ĥn|n−1 = AĤn−1|n−1 (4)

where Ĥn−1|n−1 denotes the system state estimate at time instant
(n− 1) and Ĥn|n−1 denotes the projection of Ĥn−1|n−1 onto time
instant n. The aim here becomes that of updating the available esti-
mate of the system state given the accessible information at time in-
stant n, that is, obtaining Ĥn|n given the observed system response
yn. This is achieved through selecting the system state estimates
{Ĥn|n : n = 1, 2, . . .} so that they minimize the cost function

Jn = εTnε
〈α′−1〉
n with εn = yn − ŷn (5)

where 1 < α′ < α. The selected error measure, εn, indicates
the discrepancy between the predicted system response to input xn,
that is, ŷn as formulated in (4), and the observed system response
yn. Furthermore, it is straightforward to show the cost function ap-
proaches its unique minimum point as Ĥn|n → Hn (see Section 4).
Remark 4: The constraint on parameter α′ ∈ (1, α) is to guarantee
a convex shape for the cost function. This constraint also becomes
crucial in Section 4, when establishing convergence criteria.

Akin to the approach proposed by the authors in their previous
work [19] and based on the same principle, the system state estimate
is updated at each time instant in a gradient descent manner so that

Ĥn|n = Ĥn|n−1 − µ∇α
′−1Jn (6)

where∇α
′−1 represents the (α′ − 1)-order gradient operator, while

µ denotes a positive real-valued adaptation gain. After some mathe-
matical manipulations, the update law in (6) yields

Ĥn|n = Ĥn|n−1 + µεn
(
x〈α

′−1〉
n

)T
(7)

where the framework introduced in [23,24] was used for calculat-
ing fractional differentials and constant multiplicative terms are ab-
sorbed into the adaptation gain µ.

A block diagram of the proposed filtering operations is shown in
Fig. 1, where H0 represents the initial state of the dynamic system,
that is, the state of the system at n = 0. Moreover, the linear model
in (4) uses the filter output at time instant n, Ĥn|n, to estimate the
system output at time instant (n+1). Notice that for the case where
Vn vanishes and A = I, the proposed filter simplifies to that of our
previous work in [19]. Furthermore, if it is also assumed that α = 2;
then, as α′ → 2 the proposed algorithm simplifies to the LMS.

𝐱n

𝐇0

𝐀 +

𝐰n

𝐇n = 𝐀𝐇n−1 + 𝐕n
+

𝐕n

𝐲n = 𝐇n𝐱n +𝐰n

ො𝐲n = ෡𝐇n|n−1𝐱n - 𝛜n

Filtering Operation in (7)

Linear Model in (4)

Dynamic System

Filter Output (෡𝐇n|n)

෡𝐇n|n−1 = 𝐀෡𝐇n−1|n−1

Fig. 1: Operations of the proposed filtering approach. The initial
value of the dynamic system, H0, is used at the initial time instant
only. The output of the filter, Ĥn|n, is used to update the linear
model for the next time instant.

4. PERFORMANCE AND STABILITY ANALYSIS

In order to analyze the behavior of the proposed filtering technique
and establish its convergence criteria, the error measure in (5) is first
formulated in terms of the state estimation error. To this end, upon
replacing (2) and (4) into (5) we have

εn = yn − ŷn = Hnxn + wn −AĤn−1|n−1xn. (8)

Now, substitution of (3) into (8) yields

εn =AHn−1xn + Vnxn + wn −AĤn−1|n−1xn

=AΥn−1xn + Vnxn + wn

(9)

where Υn−1 = Hn−1 − Ĥn−1|n−1 denotes the state estimation
error at time instant (n− 1).

Using the expression in (9), the update law in (7) can be refor-
mulated to give

Ĥn|n = Ĥn|n−1 + µAΥn−1Xn + µVnXn +Qn (10)
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where Xn = xn
(
x
〈α′−1〉
n

)T
and Qn = µwn

(
x
〈α′−1〉
n

)T
.

Substituting (4) into (10) allows the state estimation error to be
expressed in a regressive fashion as

Υn = AΥn−1 − µAΥn−1Xn + Vn − µVnXn −Qn

which can be rearranged as

Υn = AΥn−1 (I− µXn) + Vn (I− µXn)−Qn. (11)

Alternatively, the expression in (11) can be formulated in a vector
format to give

vec {Υn} =
((

I− µX T
n

)
⊗A

)
vec {Υn−1}

+
((

I− µX T
n

)
⊗ I
)
vec {Vn} − vec {Qn}

(12)

which corresponds to a closed-form expression for the evolution of
state estimation error from one time instant to the next.

Taking the statistical expectation of (12) and considering that
{xn,wn,Vn} are assumed zero-mean and independent results in

E {vec {Υn}} =
((

I− µE
{
X T
n

})
⊗A

)
E {vec {Υn−1}} .

(13)
From (13) it becomes clear that any misadjustment in initialization
will decay exponentially fast given

ρ

((
I− µE

{
X T
n

})
⊗A

)
< 1 (14)

where ρ (·) returns the spectral radius. The condition in (14) results
in a bound on the allowed adaptation gain, given by

max
{
0,

ρ (A)− 1

ρ (A) ρ (E {Xn})

}
< µ <

ρ (A) + 1

ρ (A) ρ (E {Xn})
(15)

which will ensure convergence.
Remark 5: Recall that Xn = xn

(
x
〈α′−1〉
n

)T with α′ ∈ (1, α). The
bound on α′ ensures that E {Xn} does exist and that a bound for the
adaptation gain can be determined.

Once again, consider the regression in (11). If the convergence
condition in (15) is met; then, for 1 < p < α, the pth order statistical
moment of Υn, that is, E

{
‖vecE {Υn}‖pp

}
, converges to a stabi-

lizing solution, where the criterion 1 < p < α is set to guarantee
the statistical moment in question exists and is finite. In cases where
statistics of the regression vector, xn, are not available, a pragmatic
method for ensuring convergence is to normalize the adaptation step-
size at each time instant. In this setting, the update equation in (7)
becomes

Ĥn|n = Ĥn|n−1 +
µ

‖xn‖α
′

α′

εn
(
x〈α

′−1〉
n

)T
. (16)

Taking into account that ‖xn‖α
′

α′ = xT
nx
〈α′−1〉
n is equal to the trace

of Xn, upon repeating the analysis in (8)-(15) it becomes clear that
for the case of the normalized adaptation step-size in (16), conver-
gence will be guaranteed for 0 < µ < 1. Finally, attention of the
reader is drawn to the similarity between the expression in (12) and
the equation governing performance of the Kalman filter (see Chap-
ter 9 in [3] and Chapter 7 in [1]). Indeed, when the system state, Hn,
is accessible through a linear observer, the expression in (12) trans-
forms into a quasi-Lyapunov equation.1 However, due to the space
limitations of this venue, this matter is not explored further.

1For the case that is also restricted to Gaussian signal/noise processes,
(12) transforms into to a Lyaponov equation.

5. PERFORMANCE VERIFICATION

In this section, performance of the proposed adaptive filtering tech-
nique is illustrated. To this end, the filtering problem formulated in
Section 2 was considered, where

A =


1 0 0.04 0
0 1 0 0.04
0 0 1 0
0 0 1 1
0 0 0 1

 and Vn =

0.08 0.008
0 0.08
4 0.4
0 4

νn

with νn denoting a 2 × 4 zero-mean SαS random matrix sequence
generated so that Γvec{νn} = 10−4 × I. A regression vector of
length four with Γxn = 0.1× I was used to track the system, while

Γwn =

[
10−2 0
0 10−2

]
⊗
[
1 0.2
0.2 1

]
.

Furthermore, in all the conducted simulations α′ = α − 0.5. The
mean absolute error (MAE), given by E {|εl,n|}, and mean absolute
deviation (MAD), given by E {|Υn|}, were considered as perfor-
mance metrics.

In the first set of simulations, tracking performance of the pro-
posed adaptive filtering technique was considered. In this case, the
characteristic exponent was α = 1.8 and the adaptation gain was
µ = 0.2. The MAE and MAD performance metrics are shown in
Fig. 2 and the transient behavior of E {vec {Υn}} is shown in Fig. 3.
In addition, to demonstrate importance of the fractional-order ap-
proach, Fig. 2 also includes filtering results for the conventional ap-
proach using the first-order gradient operator to minimize cost func-
tion Jn = εTnεn, which corresponds to the case of α′ → 2. From
Fig. 2 and Fig. 3, observe that the proposed adaptive filter, both with
the normalized update term in (16) and with the update term in (7),
converged and was able to track the system state. Moreover, from
Fig. 2 it becomes clear that the conventional approach, that is, for
α′ → 2, was unable to track the system state. Furthermore, note that
the conventional approach exhibited large jitters (sharp spikes) in its
MAE and MAD performance. These jitters are due to the regression
and background noise sequences being heavy tailed. On the other
hand, the proposed adaptive filtering technique had a smother MAE
and MAD performance especially in the case where the step-size
was normalized.

In the second set of simulations, the MAD performance profile
of the proposed adaptive filtering technique was considered. The
steady-state MAD performance of the proposed adaptive filtering
technique for varying adaptation gain and characteristic exponent
values are shown in Fig. 4, while Fig. 5 shows performance of the
proposed adaptive filtering technique with normalized step-size, as
formulated in (16). From Fig. 4 and Fig. 5, observe that the steady-
state MAD performance of the filter degrades as the characteristic
exponent decreases. This is due to the heavier tailed distributions of
the noise, {Vn,wn}, and regression, xn, processes. This follows
from (11) and (12) from which it can be inferred that encountering
jitters (sharp jumps in value or spikes) in xn, wn, or Vn will result
in a similar behavior in Υn that manifests it self as a degraded MAD
performance. It should also be noted that Fig. 4 and Fig. 5 indicate
that using the normalized update term formulated in (16) reduces
MAD performance dependency on the characteristic exponent, as a
normalized step-size counters the effect caused by jitters in xn.
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Fig. 2: The MAE and MAD performances of the proposed adaptive
filtering technique are shown in the top and bottom graphs respec-
tively. The approach without the normalized step-size formulated in
(7) is shown in blue, while the approach with the normalized step-
size formulated in (16) is shown in red. The conventional filtering
performance for which α′ → 2 is shown in green.

50 100 150 200 250 300 350 400
Sample Number

-1

-0.5

0

0.5

1

E
{v

ec
{

n
}}

50 100 150 200 250 300 350 400
Sample Number

-1

-0.5

0

0.5

1

E
{v

ec
{

n
}}

Fig. 3: Transient behavior of all components of E {vec {Υn}}. The
top graph shows results obtained by the approach without the nor-
malized step-size formulated in (7), while the bottom graph shows
results obtained by the approach with the normalized step-size for-
mulated in (16).

-8

-6

2

-4

-2

0

M
A

D
 (

dB
)

2

4

0.5
0.41.8

0.3
0.2

1.6 0.1

Fig. 4: The MAD performance for the proposed filtering technique
for varying adaptation gain and characteristic exponent values. Note
that the step-size was not normalized.
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Fig. 5: The MAD performance for the proposed filtering technique
for varying adaptation gain and characteristic exponent values. Note
that the step-size was normalized.

6. CONCLUSION

In order to suit estimation and tracking needs arising in mod-
ern adaptive filtering applications, the classical adaptive filtering
paradigm has been revised. The formulated problem is general in
the sense that it can be transformed into the LMS (cf. Kalman)
filtering approaches as a special case and can accommodate SαS
signal models. Then, based on minimizing fractional powers of an
error measure using differentials of orders less than one, a gradient-
descent type adaptive solution to the formulated problem has been
developed. The performance of the derived algorithm has been
analyzed, establishing the required convergence criteria. The ef-
fectiveness of the derived adaptive filtering technique has been
validated over illustrative simulation examples.
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