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ABSTRACT

The huge volume of data that are available today requires data-
selective processing approaches that avoid the costs in computa-
tional complexity via appropriately treating the non-innovative data.
In this paper, extensions of the well-known adaptive filtering LMS-
Newton and LMS-Quasi-Newton Algorithms are developed that
enable data selection while also addressing the censorship of out-
liers that emerge due to high measurement errors. The proposed
solutions allow the prescription of how often the acquired data are
expected to be incorporated into the learning process based on some
a priori information regarding the environment. Simulation results
on both synthetic and real-world data verify the effectiveness of
the proposed algorithms that may achieve significant reductions in
computational costs without sacrificing estimation accuracy due to
the selection of the data.

Index Terms— Adaptive Signal Processing, LMS-Newton,
Adaptive Filters, Learning Systems, Data Processing

1. INTRODUCTION

In the era of big data, the processing of the acquired datasets will
demand huge computational load if an effective strategy is not fol-
lowed. To that end, data-selective processing techniques have been
recently developed with the view to reduce the required computa-
tional complexity by enabling the processing for only innovation
bearing new data. Towards that direction, a number of different tra-
ditional online learning and adaptive processing schemes have been
enhanced with data-selective capabilities [1–8]. The proposed solu-
tions may achieve similar performance to the one of the non-data-
selective versions by processing only a very small portion of the
available data. Solutions that treat the presence of outliers have also
been considered.

In this work, data-selective algorithms are developed for the
Least Mean Square-Newton (LMSN) and LMS-Quasi-Newton (LM-
SQN) ones that have yet to appear in the literature. A number of
different LMSN-based algorithms have been developed throughout
the past 25 years [9–16]. They are powerful alternatives to the clas-
sical LMS algorithm whose performance is highly dependent on the
statistics of the input signal. Thus, despite their increased complex-
ity (compared to the LMS one), they offer significantly improved
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performance in cases, as an example, where the spread of the eigen-
values of the input-signal correlation matrix is large, similarly to the
well-known Recursive Least Squares (RLS) algorithm [11]. Fur-
thermore, they give rise to the LMSQN counterparts that exhibit the
desirable characteristics of the LMSN/RLS algorithms with reduced
requirements in Floating Point Operations (FLOPS) per update itera-
tion [10,12,13] and improved robustness to quantization errors [14].

To that end, a data-selective version of the classical LMSN [11]
and the LMSQN in [14] are developed in the present work. The pro-
posed algorithms incorporate only innovative data to the adaptation
process while discarding possible outliers and non-innovative infor-
mation. In literature so far there are works that study the robustness
behavior of some adaptive algorithms [17–21], though the proposed
approaches are not related to the one presented in the paper. Here,
the aim is to discard the outliers from the learning process, as dis-
cussed above, and not to provide solutions that help the adaptive
algorithms to recover from outlier samples, as in [17–21].

The data selection process is achieved by establishing a con-
nection between two thresholds, used to classify the data quality
as non-innovative/innovative/outliers and a prescribed probability of
update. The latter probability of update is further connected to the
Mean Square Error (MSE) performance metric [22] of the algorithm
under consideration. The performance of the proposed approaches is
evaluated via simulations on synthetic and real-world data, as well.
The results show on both the cases that the data-selective solutions
achieve very close performance to the ones of the corresponding
non-data-selective counterparts while being much more efficient due
to the computational complexity reduction from their data selection
capability. Furthermore, they do not allow the incorporation of out-
liers in the learning process, and thus, avoiding a possible perfor-
mance degradation.

The rest of this paper is organized as follows. Sec. 2 describes
the considered system model. In Sec. 3, the concept of LMSN and
LMSQN algorithms are described. Sec. 4 presents the data-selective
LMSN and LMSQN algorithms. Sec. 5 presents some indicative
simulation results, and Sec. 6 concludes this work.

2. SYSTEM MODEL

In this paper, we consider learning algorithms for the problem of
linear system identification. The unknown system is excited with a
known real signal x(k), where k is the time index. The observed
signal at the output of the system is given by,

d(k) = wT
o x(k) + n(k), (1)

where wo ∈ RL+1 is the (L+ 1)× 1 unknown system to be identi-
fied, x(k) = [x(k) x(k−1) . . . x(k−L+1)]T , n(k) is a Gaussian
noise sample of zero mean and variance σ2

n, superscript T stands for
the transpose of vector/matrix and R is the set of real numbers.
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Let us assume that the filtering algorithm generates an output
signal estimation through wT (k)x(k), where w(k) is the (L+1)×
1 vector whose entries are the estimation of the unknown system’s
parameters at time index k. Then, the error estimation sequence e(k)
is defined as

e(k) = d(k)−wT (k)x(k), (2)
for k = 0, 1, . . . ,∞.

The mean square error for the discussed model at time instance
k can be expressed as [22] ,

ξ(k) =E{e2(k)} = E{n2(k)} − 2E{n(k)∆wT (k)x(k)}+

E{∆wT (k)x(k)xT (k)∆w(k)}, (3)

where ∆w(k) = w(k) − wo and E{·} denotes the expectation
operator. By assuming that the additive noise variables and the coef-
ficients are uncorrelated results in

ξ(k) =σ2
n + E{∆wT (k)x(k)xT (k)∆w(k)}

=σ2
n + ξexc(k), (4)

where ξexc(k) denotes the excess MSE and E{n2(k)} = σ2
n. Eq.

(4) is important for the data-selective algorithms since it is used for
prescribing the desired probability of update, as shown in Sec. 4.

3. LMSN AND LMSQN ALGORITHMS

In this section, the LMSN and LMSQN algorithms are described.
Such algorithms aim at minimizing the cost function

J(w(k)) =
1

2
|e(k)|2, (5)

where | · | denotes the absolute value. This is achieved by perform-
ing recursive coefficient updates in the direction of the negative esti-
mated gradient ∇w(k)J(w(k)) = −x(k)ẽ(k) pre-multiplied by the
inverse of the estimated input signal autocorrelation matrix R̂−1(k)
as [11]

w(k) = w(k − 1) +
µ

xT (k)R̂−1(k)x(k)
R̂−1(k)x(k)ẽ(k), (6)

where µ is a step-size parameter, ẽ(k) = d(k)−wT (k− 1)x(k) is
the a priori estimation error and R̂(k) is the estimation of the input
signal autocorrelation matrix, defined as R = E{x(k)xT (k)}.

The difference between the LMSN and the LMSQN algorithms
considered here is related to the way the estimate R̂−1(k) is cal-
culated. For the LMSN method, matrix R̂(k) is estimated via a
Robbins-Monro procedure that results in the following update of its
inverse, given by [11]

R̂−1(k) =
1

1− α

{
R̂−1(k − 1)

− R̂−1(k − 1)x(k)xT (k)R̂−1(k − 1)
1−a
a

+ x(k)T R̂−1(k)x(k)

}
, (7)

where α is a step-size parameter. For the LMSQN algorithm con-
sidered in the present paper, the approach in [14] is used to update
R̂−1(k), that is

R̂−1(k) =
1

1− α

{
R̂−1(k − 1) +

(
µ

2x(k)T R̂−1(k)x(k)
− 1

)

× R̂−1(k − 1)x(k)xT (k)R̂−1(k − 1)

x(k)T R̂−1(k)x(k)

}
. (8)

The performance of each one of the approaches has been the-
oretically analyzed and extensively studied via simulations in [11]
and [14], respectively. It is noteworthy to mention that the LM-
SQN approach appears to be very robust to quantization errors that
in general tend to degrade the performance of the LMSN and RLS
algorithms significantly [14].

4. DATA-SELECTIVE APPROACHES

A way to introduce the data selection property to the LMSN and
LMSQN algorithms is to perform an update of the coefficients only
if |e(k)|2 is greater than a scaled noise power level, i.e., τ(k)σ2

n

for some threshold τ(k). Correspondingly, if |e(k)|2 is greater than
τmaxσ

2
n for again some threshold τmax, an outlier is identified and

thus, no update is either performed. These can be translated to the
minimization of the function

J ′(w(k)) =

{
1
2
|e(k)|2, if

√
τ(k) ≤ |e(k)|

σn
<

√
τmax

0, otherwise.
(9)

The negative subgradient of this nondifferentiable objective func-
tion, is given by,

∂J ′(w(k)) =



−x(k)e(k),
√
τ(k) < |e(k)|

σn
<

√
τmax

{−θx(k)e(k) : 0 ≤ θ ≤ 1}, |e(k)|
σn

=
√
τ(k)

0, |e(k)|
σn

<
√
τ(k)

{−ϕx(k)e(k) : 0 ≤ ϕ ≤ 1}, |e(k)|
σn

=
√
τmax

0, |e(k)|
σn

>
√
τmax.

(10)
By using (10), it can be shown that the updates of the coefficients for
the data-selective LMSN and LMSQN algorithms are given by,

w(k) ={
w(k − 1) + µ R̂−1(k)x(k)ẽ(k)

xT (k)R̂−1(k)x(k)
,
√
τ(k) ≤ |e(k)|

σn
<

√
τmax

w(k − 1), otherwise.
(11)

The data-selective strategy may also be adopted for the update of
matrix R̂−1, as well. That is, R̂−1 is updated via (7) and (8) , re-
spectively provided that

√
τ(k) < |e(k)|

σn
<

√
τmax, holds. Alter-

natively, if outliers are not in the input signal, it is possible to update
the R̂−1 in all iterations, as long as the computational burden related
to it is not an issue. In this paper, the former approach is followed.

Let us now assume, that the desired probability of coefficient
updates based on the upper branch in (11) is denoted by Pup(k).
This probability can be further modeled as

Pup(k) = P

{
|e(k)|
σn

>
√
τ(k)

}
− P

{
|e(k)|
σn

>
√
τmax

}
,

(12)
where P {·} is the probability of an event. In the steady state perfor-
mance of the algorithm and under the assumption of white Gaussian
input signals, (12) may be written as,

Pup = 2Q

(
σn

√
τ

σe

)
− 2Q

(
σn

√
τmax

σe

)
, (13)

where Q(·) is the complementary Gaussian cumulative distribution
function, given by Q(x) = 1/(2π)

∫∞
x
exp(−t2/2)dt [23] and σ2

e

represents the error signal variance. Note that in (13), the depen-
dence on index k was silently dropped under the assumption of sta-
tionarity. In other words, in the steady state, it is now assumed that
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Algorithm 1 Data-selective LMSN and LMSQN Algorithms
1: Inputs: 0 < µ ≤ 1, 0 < α ≤ 1 (for LMSN), γ small positive value,
Pup and τmax

2: Initialize w(0) = 0L+1 and R̂−1(0) = γIL+1

3: Set β =
µPup

2−µPup
4: Calculate τ from (13), if outliers are present or from (16), otherwise
5: for k = 1, 2, . . . do
6: Acquire x(k) and d(k)
7: e(k) = d(k)−wT (k)x(k)
8: if

√
τσn ≤ |e(k)| ≤

√
τmaxσn then

9: t(k)← R̂−1(k)x(k)
10: ψ(k)← xT (k)t(k)

11: w(k + 1)← w(k) + µ
t(k)e(k)
ψ(k)

12: R̂−1(k + 1)← 1
1−a

[
R̂−1(k)− t(k)tT (k)

1−α
α

+ψ(k)

]
, for LMSN

R̂−1(k + 1)← R̂−1(k) +
µ

2ψ(k)
−1

ψ(k)
t(k)tT (k), for LMSQN

13: else if |e(k)| ≤
√
τσn then

14: w(k + 1)← w(k)
15: else if |e(k)| ≥ √τmaxσn then
16: w(k + 1)← w(k), e(k) = 0, d(k) = 0
17: end if
18: end for

τ(k) is fixed at τ . For the case that no outliers are expected, the
second term of the difference in (13) is dropped.

It remains to calculate σ2
e in order to prescribe the desired proba-

bility of update through (13). It can be seen that under the considered
assumptions E{e(k)} = 0 and thus, σ2

e = ξ(∞) where ξ(∞) is the
steady-state MSE for the algorithms under consideration. By (4), in
order to calculate ξ(∞), we need the expression of the steady-state
excess MSE, ξexc(∞), specified by the following proposition.
Proposition 1: The excess mean square error at the steady-state of
data-selective LMSN and LMSQN algorithms that follow the update
rule in (11) can be approximated by

ξexc(∞) =
µPup

2− µPup
σ2
n. (14)

Sketch of the proof : Both data-selective algorithms, the LMSN and
LMSQN, utilize an estimate of the inverse correlation matrix that
should converge to the actual R−1. In both cases, the general ex-
pression for their coefficient update can be represented by an equiv-
alent expression given by (15)

w(k) = w(k− 1) +
µPup

xT (k)R̂−1(k)x(k)
R̂−1(k)x(k)ẽ(k). (15)

For this type of update equation, using similar analysis procedures,
the result of (14) can be derived, see [11] and [24], for details. □

Having specified the excess MSE of the data-selective algo-
rithms, we may calculate the required thresholds by plugging its
expression in (13). If no outliers are present in the data, the value of
parameter τ that prescribes the desired Pup can be calculated by

√
τ =

√
1 + βQ−1(0.5Pup), (16)

where β =
µPup

2−µPup and Q−1(·) is the inverse of the Q(·) function.
For the case of outliers, the threshold should be selected according to
some prior information regarding the signal sources and supporting
circuitry such as overflow levels [25]. The steps of both the algo-
rithms are given in Algorithm 1, where the quantities t(k) and ψ(k)
in lines 9 and 10, respectively are used for minimizing the required

computations. As it is evident also from the analysis so far, the pro-
posed data-selective solutions require knowledge of the noise power.
Such information may be estimated as discussed in [25].

We close this section with a discussion regarding the complexity
of the proposed data-selective approaches. By analyzing the com-
plexity of the original algorithms that do not possess data selec-
tion capabilities, it can be shown that the LMSN algorithm requires
CLMSN = 6L2+19L+15 FLOPS while the LMSQN one requires
CLMSQN = 5L2+17L+15 FLOPS per iteration, respectively. The
average computational complexity per iteration of the data-selective
LMSN and LMSQN algorithms is PupCLMSN and PupCLMSQN ,
respectively. This is the case since the data-selective algorithms are
performing updates with average probability equal to Pup.

5. SIMULATIONS

In this section, simulations are presented on synthetic and real-world
data in order to evaluate the performance of the data-selective LMSN
and LMSQN algorithms. In all the synthetic experiments, a system
identification problem is examined for an unknown system with im-
pulse response given by,

[0.1010 0.3030 0 − 0.2020 − 0.4040

− 0.7071 − 0.4040 − 0.2020].

Two cases of input signals are examined, a first-order and a fourth-
order AR process, given by

x(k) =0.88x(k − 1) + n1(k),

x(k) =− 0.55x(k − 1)− 1.221x(k − 2)− 0.49955x(k − 3)

− 0.4536x(k − 1) + n2(k),

where n1(k) and n2(k) are samples from a Gaussian noise uncor-
related with the additional noise whose variance is set such as the
input signal is of unit variance. The additional noise is of variance
σ2
n = 0.001. The parameters of the LMSN and LMSQN are set to
µ = 0.1 and α = 0.1 and µ = 0.08 for both the data-selective and
the original versions, respectively. In the examined cases, the per-
formance of the LMS and its data-selective counterpart [6] is also
presented for comparison purposes. Both the step-size parameter of
the data-selective and the original LMS is set to µ = 0.08.

In Fig. 1.a, the MSE learning curves of the data-selective LMSN
(“DS-LMSN”) and LMSQN (“DS-LMSQN”) are compared to the
ones of the original non-data-selective approaches and the ones of
the data-selective (“DS-LMS”) and the original LMS for the first-
order AR input signal. The probability of update is set to Pup = 0.4.
As can been seen, the performance of the data-selective approaches
is almost identical to the original ones, even if the former are per-
forming approximately 60% fewer updates in the mean than the lat-
ter. Furthermore, the LMSN and LMSQN based approaches per-
form better than the LMS-based one since they converge faster to
their steady-state performance. Similar conclusions can be reached
by observing the corresponding results when the input signal is a
fourth-order AR process in Fig. 1.b. Though, we observe that the
gap on the performance between the LMSN and LMSQN-based ap-
proaches and the LMS-based one is even bigger. This is due to fact
that the former approaches appear to be less dependent on the statis-
tics of the input signal, as discussed on the Introduction.

In Figs. 1.c - 1.d, the experimental setup of Figs. 1.a - 1.b is
repeated, though now it is assumed that outliers are also present in
the output signal d(k). The outliers addition to the 1% of the output
signal is done via a Bernouli process multiplying a random binary
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Fig. 1. MSE learning curves for the data-selective and the original ap-
proaches.
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Fig. 2. Comparison between prescribed Pup and the achieved P̂LMSN
up and

P̂LMSQN
up by the data-selective LMSN and LMSQN algorithms.

signal with an amplitude equal to ±50. In Figs. 1.c - 1.d, the MSE
learning curves are shown for the data-selective LMSN, LMSQN
and LMS algorithms for the first-order and fourth-order AR input
signals, respectively. The proposed solutions are performing satis-
factorily for the prescribed probability of update while they maintain
their gap on the performance compared to the LMS based solution.

In Figs. 2.a - 2.b, the accuracy of the proposed method in pre-
scribing the desired probability of update to the considered algo-
rithms is examined. To that end, we plot the achieved probability of
update along with the desired one (“Pup”) for both the data-selective
LMSN (“P̂LMSN

up ”) and LMSQN (“P̂LMSQN
up ”) algorithms. An

AR(1)-modeled input signal is considered for both the cases where
the output signal is corrupted by outliers or not. The results show
that the achieved probability of update for both the proposed data-
selective algorithms follows the desired one closely.

Let us move now to the results based on the real-world data. The
data-set used is provided by the University of California at Irvine and
is constituted by temperature recordings from a significantly polluted
area in Italy [26]. The aim is to employ the adaptive filter in order
to predict the temperature values based on past measurements. To
that end, the values of the predicting filter must be identified. It is
evident that in order to apply a data selection strategy, the value of
the prediction error variance σ2

e must also be derived for the consid-
ered prediction setup. This can be done by following the procedure
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Fig. 3. Simulation results in real world data-set. a) Comparison between the
original signal and the predicted one by the data-selective LMSN and LM-
SQN algorithms. b) Comparison between prescribed Pup and the achieved
P̂LMSN
up and P̂LMSQN

up by the data-selective algorithms.

in [22]. By assuming that the past samples x(k) are used for an
one-step-ahead prediction setup, the MSE may be written as,

ξ(k) = E{(x(k + 1)−wT (k)x(k))2}. (17)

From (17), it can be shown that the minimum MSE is given by

ξmin(k) = r(0)−wT
o


r(1)
r(2)

...
r(N + 1)

 , (18)

where wo is the optimal coefficient of the prediction filter and r(l) =
E{x(k)x(k − l)} for a stationary process. An estimate of σ2

e may
be derived at the kth iterate by using the current coefficient estimate
w(k) in place of wo in (18). The value of r(l) is estimated via

r(l) = βr(l − 1) + (1− β)x(k)x(k − l), (19)

where β is a forgetting factor. The value used for the simulations
is β = 0.99. The step size parameter is set to µ = 0.1 for both
the algorithms. For the LMSN one, we set α = 0.05, as well. The
length of the prediction filter is set to L+ 1 = 15.

In Fig 3.a, the output of the data-selective prediction filter for
Pup = 0.4 is compared to the original signal values. As it is shown,
both the data-selective LMSN and LMSQN approaches predict quite
accurately the original signal while they perform a reduced number
of updates. In Fig. 3.b, the achieved probability of the data-selective
LMSN and LMSQN algorithms is examined when the prescribed
probability is set to a value within the range [0 1]. The results show
that the achieved probability for both the LMSN and LMSQN algo-
rithms is close to the prescribed one. The achieved probability of
LMSN is more close to the prescribed one compared to one of the
LMSQN algorithm, though that gap is negligible for higher values
of the prescribed probability.

6. CONCLUSION

In this work, data-selective versions of the well known LMSN and
LMSQN algorithms were developed. The proposed solutions aim
at the computational complexity reduction by avoiding update itera-
tions when non-innovative data are acquired. Furthermore, the pro-
posed solutions are also avoiding updates when outliers are detected,
thus enhancing the learning performance of the original schemes.
Simulation results verify the efficiency of the proposed approaches
over the original ones that have not data selection capabilities and
over the data-selective LMS algorithm.
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