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ABSTRACT
The recursive least-squares (RLS) adaptive filter is an appealing
choice in system identification problems, mainly due to its fast
convergence rate. However, this algorithm is computationally very
complex, which may make it useless for the identification of high
length impulse responses, like in echo cancellation. In this paper,
we focus on a new approach to improve the efficiency of the RLS
algorithm. The basic idea is to exploit the impulse response de-
composition based on the nearest Kronecker product and low-rank
approximation. Thus, a high-dimension system identification prob-
lem is reformulated in terms of low-dimension problems, which are
tensorized together. Simulations performed in the context of echo
cancellation indicate the good performance of the RLS algorithm
based on this approach.

Index Terms— Adaptive filter, echo cancellation, low-rank ap-
proximation, nearest Kronecker product, recursive least-squares.

1. INTRODUCTION

In many system identification problems, the basic approach is to
model the unknown system using an adaptive filter [1]. However, in
several applications, the unknown system can be modeled as a finite
impulse response filter with a large number of coefficients, which
raises additional challenges for the adaptive filter used for this pur-
pose. In this context, the echo cancellation application [2], [3] repre-
sents one of the most popular examples, which involves long length
adaptive filters (e.g., hundreds or even thousands of coefficients).

Due to its fast convergence rate, the recursive least-squares
(RLS) algorithm could represent an appealing choice for system
identification problems. However, its main limitation is related to the
high computational complexity, which becomes prohibited in case of
long length adaptive filters. Several methods to reduce the compu-
tational amount of the RLS algorithm can be found in the literature,
which lead to the so-called fast or efficient versions, e.g., see [4]–[7]
and the references therein. Nevertheless, the problem of dealing with
long length adaptive filters is still a critical issue in system identifi-
cation contexts like echo cancellation.

Recently, in [8], we presented a system identification approach
based on an optimal low-rank approximation that involves the Kro-
necker product decomposition [9] of the impulse response. The main
idea was to exploit this impulse response decomposition, so that a
high-dimension system identification problem could be reformulated
in terms of low-dimension problems, which are tensorized together.
This approach fits very well for the identification of typical echo
paths (which are usually low-rank systems). In [8], we addressed
the system identification problem based on an iterative Wiener filter.
However, due to its inherent limitations, the Wiener filter is not a
practical solution in real-world echo cancellation scenarios.

In this paper, we propose an RLS algorithm based on the nearest
Kronecker product decomposition together with low-rank approx-
imation. These techniques were previously exploited in different
frameworks, which are mainly related to tensor decomposition and
modelling [10]–[21]. However, the adaptive algorithms developed
in this context, e.g., [22]–[27], did not involve low-rank approxi-
mations. Thus, they face a major limitation related to the particular
(quasi-periodic) form of the impulse response to be identified. While
this form resembles (to some extend) a channel with echoes, it is far
away from the very different natures of realistic echo paths. The pro-
posed RLS algorithm is designed to overcome this limitation, being
applicable for the identification of low-rank systems, like echo paths.

The paper is organized as follows. Section 2 summarizes the
framework of our approach [8]. The proposed RLS algorithm based
on the nearest Kronecker product decomposition is derived in Sec-
tion 3. Simulation results (in the context of echo cancellation) are
provided in Section 4. Finally, Section 5 concludes this work.

2. LINEAR SYSTEM IDENTIFICATION BASED ON A
KRONECKER PRODUCT DECOMPOSITION

Let h be a real-valued (unknown) impulse response of length L =
L1L2. Without loss of generality, we may assume that L1 ≥ L2.
Hence, the impulse response can be decomposed as

h =
[
sT1 sT2 . . . sTL2

]T
, (1)

where sl, l = 1, 2, . . . , L2 are L2 short impulse responses of length
L1 each and the superscript T is the transpose operator. In [8], it was
shown how well h can be approximated by h2 ⊗ h1, where h1 and
h2 are two impulse responses of lengths L1 and L2, respectively, and
⊗ is the Kronecker product. To this purpose, let us define the nor-
malized misalignment as M (h1,h2) = ∥h− h2 ⊗ h1∥2 / ∥h∥2
[9], where ∥·∥2 denotes the ℓ2 norm. Also, we can reorganize the
components of h into a matrix of size L1 × L2:

H =
[
s1 s2 . . . sL2

]
, (2)

so that we can write M (h1,h2) =
∥∥H− h1h

T
2

∥∥
F
/ ∥H∥F, where

∥·∥F denotes the Frobenius norm. To find the optimal values of
h1 and h2, we need to minimize M (h1,h2). But minimizing this
quantity is equivalent to finding the nearest rank-1 matrix to H [9],
which is related to its singular value decomposition (SVD) [28].

Thus, using the SVD, this matrix can be factorized as H =
U1ΣUT

2 =
∑L2

l=1 σlu1,lu
T
2,l, where U1 and U2 are two orthog-

onal matrices of sizes L1 × L1 and L2 × L2, respectively, and Σ is
an L1 ×L2 rectangular diagonal matrix with nonnegative real num-
bers on the main diagonal. The columns of U1 (resp. U2) are the
left-singular (resp. right-singular) vectors of H, while the diagonal
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entries σl, l = 1, 2, . . . , L2 of Σ represent the singular values of H,
with σ1 ≥ σ2 ≥ · · · ≥ σL2 ≥ 0. In this context, the optimal im-
pulse responses that minimize M (h1,h2) are h1 =

√
σ1u1,1 and

h2 =
√
σ1u2,1, where u1,1 (resp. u2,1) is the first column of U1

(resp. U2). Hence, the optimal approximation of h is h = h2 ⊗h1.
In the more general case when the short impulse responses

from (1) may not be that linearly dependent, we can use the ap-
proximation h ≈

∑P
p=1 h2,p ⊗ h1,p = vec

(
H1H

T
2

)
, where

P ≤ L2, h1,p and h2,p are impulse responses of lengths
L1 and L2, respectively, vec(·) denotes the vectorization opera-
tion [29], and H1 =

[
h1,1 h1,2 . . . h1,P

]
and H2 =[

h2,1 h2,2 . . . h2,P

]
are matrices of sizes L1 × P and

L2 × P , respectively. In this context, the problem is to minimize
M (H1,H2) =

∥∥H−H1H
T
2

∥∥
F
/ ∥H∥F, which leads to the opti-

mal solutions:

H1 =
[
h1,1 h1,2 . . . h1,P

]
(3)

=
[ √

σ1u1,1
√
σ2u1,2 . . .

√
σPu1,P

]
,

H2 =
[
h2,1 h2,2 . . . h2,P

]
(4)

=
[ √

σ1u2,1
√
σ2u2,2 . . .

√
σPu2,P

]
,

where u1,p, p = 1, 2, . . . , P (resp. u2,p, p = 1, 2, . . . , P ) are
the first P columns of U1 (resp. U2). Consequently, the optimal
approximation of h is

h(P ) =
P∑

p=1

h2,p ⊗ h1,p =
P∑

p=1

σpu2,p ⊗ u1,p, (5)

while for P = L2, we have h =
∑L2

l=1 σlu2,l ⊗ u1,l, which repre-
sents the exact decomposition.

Concluding, if for P ≪ L2, the approximation in (5) is a good
one, we can take advantage of the nearest Kronecker product de-
composition for system identification problems. In other words, if
the rank of the matrix H is equal to P ≪ L2, then we can estimate
h at least as well as in the conventional approach. This framework
fits very well in the context of echo cancellation scenarios, where
this matrix is never really full rank (because of the redundancies due
to the reflections and/or sparseness in the system [30]–[33]).

3. RLS ALGORITHM BASED ON THE NEAREST
KRONECKER PRODUCT DECOMPOSITION

The optimal filters required in (5) can be found using the iterative
Wiener filter proposed in [8]. However, the Wiener filter may not
always be very efficient or convenient to use in practice. In the fol-
lowing, we derive an RLS algorithm based on the previous approach.

Let us consider the signal model specific to a system identifica-
tion problem (like in echo cancellation):

d(t) = hTx(t) + w(t) = y(t) + w(t), (6)

where d(t) is the zero-mean desired signal at the discrete-time in-
dex t, h is the impulse response of the unknown system (of length
L), x(t) =

[
x(t) x(t− 1) · · · x(t− L+ 1)

]T is a vector
containing the most recent L time samples of the zero-mean input
signal x(t), and w(t) is the zero-mean additive noise. It is assumed
that all the data is real valued and x(t) and w(t) are uncorrelated.
The goal is to estimate h with an adaptive filter, ĥ(t), of length L.
Thus, we can define the error signal between the desired signal, d(t),
and the estimated signal, ŷ(t), as

e(t) = d(t)− ŷ(t) = d(t)− ĥT (t− 1)x(t). (7)

As explained in Section 2, let us consider that L = L1L2 (with
L1 ≥ L2) and rank (H) = P ≪ L2, where H is defined in (2),
so that the impulse response can be decomposed as in (5). As a
consequence, we can also choose to decompose the adaptive filter as

ĥ(t) =

P∑
p=1

ĥ2,p(t)⊗ ĥ1,p(t), (8)

where ĥ1,p(t) and ĥ2,p(t) are filters of lengths L1 and L2, re-

spectively. Using the relationships
[
ĥ2,p(t)⊗ IL1

]
ĥ1,p(t) =[

IL2 ⊗ ĥ1,p(t)
]
ĥ2,p(t) = ĥ2,p(t) ⊗ ĥ1,p(t), where IL1 and IL2

are the identity matrices of sizes L1×L1 and L2×L2, respectively,
into (8), the error signal can be expressed into two different manners:

e(t) = d(t)−
P∑

p=1

ĥT
1,p(t− 1)

[
ĥ2,p(t− 1)⊗ IL1

]T
x(t) (9)

= d(t)−
P∑

p=1

ĥT
1,p(t− 1)x2,p(t) = d(t)− ĥ

T

1 (t− 1)x2(t),

e(t) = d(t)−
P∑

p=1

ĥT
2,p(t− 1)

[
IL2 ⊗ ĥ1,p(t− 1)

]T
x(t) (10)

= d(t)−
P∑

p=1

ĥT
2,p(t− 1)x1,p(t) = d(t)− ĥ

T

2 (t− 1)x1(t),

where x2,p(t) =
[
ĥ2,p(t− 1)⊗ IL1

]T
x(t),

ĥ1(t) =
[

ĥT
1,1(t) ĥT

1,2(t) · · · ĥT
1,P (t)

]T
, (11)

x2(t) =
[
xT
2,1(t) xT

2,2(t) · · · xT
2,P (t)

]T
,

x1,p(t) =
[
IL2 ⊗ ĥ1,p(t− 1)

]T
x(t),

ĥ2(t) =
[

ĥT
2,1(t) ĥT

2,2(t) · · · ĥT
2,P (t)

]T
, (12)

x1(t) =
[
xT
1,1(t) xT

1,2(t) · · · xT
1,P (t)

]T
.

Following the least-squares (LS) error criterion [1], we can de-
fine the cost functions:

Jĥ2

[
ĥ1(t)

]
=

t∑
i=1

λt−i
1

[
d(i)− ĥ

T

1 (t)x2(i)
]2

, (13)

Jĥ1

[
ĥ2(t)

]
=

t∑
i=1

λt−i
2

[
d(i)− ĥ

T

2 (t)x1(i)
]2

, (14)

where λ1 (0 ≪ λ1 < 1) and λ2 (0 ≪ λ2 < 1) are the forgetting

factors. The minimization of Jĥ2

[
ĥ1(t)

]
and Jĥ1

[
ĥ2(t)

]
with re-

spect to ĥ1(t) and ĥ2(t), respectively, lead to the normal equations:

R2(t)ĥ1(t) = p
2
(t), (15)

R1(t)ĥ2(t) = p
1
(t), (16)

where the terms from (15)–(16) can be recursively evaluated as

R2(t) = λ1R2(t− 1) + x2(t)x
T
2 (t),

p
2
(t) = λ1p

2
(t− 1) + x2(t)d(t),

R1(t) = λ2R1(t− 1) + x1(t)x
T
1 (t),

p
1
(t) = λ2p

1
(t− 1) + x1(t)d(t).
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From the previous equations, it is straightforward to derive the RLS
algorithm based on the nearest Kronecker product decomposition,
namely RLS-NKP, which is defined by the updates:

ĥ1(t) = ĥ1(t− 1) + k2(t)e(t), (17)

ĥ2(t) = ĥ2(t− 1) + k1(t)e(t), (18)

where the Kalman gain vectors can be computed as follows:

k2(t) =
R−1

2 (t− 1)x2(t)

λ1 + xT
2 (t)R

−1
2 (t− 1)x2(t)

, (19)

k1(t) =
R−1

1 (t− 1)x1(t)

λ2 + xT
1 (t)R

−1
1 (t− 1)x1(t)

, (20)

and e(t) is defined in (9) or (10). Finally, using (17)–(18) and the
related decompositions (11)–(12), the estimated impulse response
can be evaluated as in (8). Also, based on the matrix inversion lemma
[1], the updates of R−1

2 (t) and R−1
1 (t) result in

R−1
2 (t) = λ−1

1

[
R−1

2 (t− 1)− k2(t)x
T
2 (t)R

−1
2 (t− 1)

]
, (21)

R−1
1 (t) = λ−1

2

[
R−1

1 (t− 1)− k1(t)x
T
1 (t)R

−1
1 (t− 1)

]
. (22)

As we can notice, the proposed RLS-NKP algorithm involves
matrices of size PL1×PL1 and PL2×PL2, while the regular RLS
algorithm would involve matrices of size L1L2×L1L2. Basically, a
system identification problem of size L = L1L2 is transformed into
two “smaller” problems of size PL1 and PL2, respectively. Con-
sequently, when P ≪ L2, it is much more convenient to use the
proposed RLS-NKP algorithm instead of the regular RLS algorithm.
In this context, in order to maximize the gain in terms of complexity,
it is reasonable to select the value of L1 close to the value of L2, such
that the sum L1 + L2 should be as small as possible as compared to
the product L1L2 [8]. Besides, since the proposed RLS-NKP algo-
rithm uses two shorter filters of lengths PL1 and PL2, improved
convergence and tracking capabilities are expected (as compared to
the regular RLS algorithm, which uses a longer adaptive filter).

The overall complexity of the regular RLS algorithm [1] is
O(L2) = O[(L1L2)

2], while the proposed RLS-NKP algorithm
requires O[(PL1)

2 + (PL2)
2] operations. Clearly, for P ≪ L2,

the computational amount of the RLS-NKP algorithm is much lower
as compared to its regular counterpart. Of course, for large values
of P (i.e., closer to L2), the computational complexity of the RLS-
NKP algorithm exceeds the conventional RLS algorithm. However,
the proposed algorithm is not designed for such purposes, but for the
identification of low-rank systems (e.g., echo paths), where the rank
of the matrix H is usually much lower as compared to L2.

4. SIMULATION RESULTS

Simulations are performed in the context of echo cancellation. The
input signal x(t) is either an AR(1) process [generated by filtering a
white Gaussian noise through a first-order system 1/

(
1− 0.9z−1

)
]

or a speech sequence; the sampling rate is 8 kHz. The additive noise
w(t) is white and Gaussian. The signal-to-noise ratio (SNR), which
is defined as E[y2(t)]/E[w2(t)] (where E[·] denotes the expecta-
tion), is set to 20 dB. The performance measure is the normalized
misalignment (in dB), defined as 20log10

(∥∥∥h− ĥ(t)
∥∥∥
2
/ ∥h∥2

)
.

In the experiments, we consider five impulse responses, as de-
picted in Fig. 1. The plot in Fig. 1(a) shows the first impulse re-
sponse from G168 Recommendation [34] (i.e., a cluster of 64 coef-
ficients padded with zeros). The second impulse response depicted
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Fig. 1. Impulse responses used in the experiments: (a) L = 500, ξ12 =

0.8957; (b) L = 500, ξ12 = 0.8080; (c) L = 500, ξ12 = 0.7549; (d)
L = 500, ξ12 = 0.5795; and (e) L = 1024, ξ12 = 0.6880.
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Fig. 2. Singular values (normalized with respect to the maximum one) of
H for the corresponding impulse responses from Fig. 1: (a)–(d) L1 = 25,
L2 = 20; and (e) L1 = L2 = 32.

in Fig. 1(b) is obtained by concatenating the first and fifth impulse
responses from G168 Recommendation [34] (i.e., two clusters of 64
and 96 coefficients, respectively, which are padded with zeros). The
burst impulse response from Fig. 1(c) contains a cluster of 64 ran-
dom taps (with Gaussian distribution), while the rest are zeros. Simi-
larly, the burst impulse response from Fig. 1(d) contains two clusters
of 64 and 96 random taps. Each of these four impulse responses has
the length L = 500, so that the decomposition can be performed
using L1 = 25 and L2 = 20. Finally, the impulse response from
Fig. 1(e) represents a typical acoustic echo path of length L = 1024,
so that we can use L1 = L2 = 32.

These impulse responses have different sparseness degrees,
which can be evaluated using a sparseness measure based on the
ℓ1 and ℓ2 norms [32] (denoted by ξ12 in the caption of Fig. 1). The
closer this measure is to 1, the sparser is the impulse response; on the
contrary, the closer the measure is to 0, the denser or less sparse is
the impulse response. However, as outlined in the previous sections,
the sparsity of the system helps (by reducing the rank of the matrix
H), but it is not the only factor. The main issue is related to the
decomposition and, consequently, to the low-rank approximation of
the impulse response. In this regard, the singular values of H (nor-
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Fig. 3. Misalignment of the RLS algorithm (L = 500) and RLS-NKP
algorithm (using L1 = 25, L2 = 20, and P < L2), for the identification of
the impulse responses from Figs. 1(a) and (b). The input signal is an AR(1)
process and the impulse response changes at times 3 and 6 seconds.
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Fig. 4. Misalignment of the RLS algorithm (L = 500) and RLS-NKP
algorithm (using L1 = 25, L2 = 20, and P < L2), for the identification of
the impulse responses from Figs. 1(c) and (d). The input signal is an AR(1)
process and the impulse response changes at times 3 and 6 seconds.

malized with respect to the maximum one) are depicted in Fig. 2, for
the corresponding impulse responses from Fig. 1. The faster these
values decrease to zero, the better is the approximation behind (5).

Next, we focus on the identification of the impulse responses
from Figs. 1(a)–(d). The proposed RLS-NKP algorithm (using L1 =
25, L2 = 20, and different values of P ) is compared to the regular
RLS algorithm (with L = 500). For a fair comparison, the forgetting
factors of the RLS-NKP algorithm are set to λ1 = 1 − 1/(KPL1)
and λ2 = 1−1/(KPL2), while the regular RLS algorithm uses the
forgetting factor λ = 1− 1/(KL), where K is a positive integer. In
these experiments, the input signal is an AR(1) process and K = 10.
In order to test the tracking capabilities of the algorithms, two abrupt
changes of the impulse responses are introduced in each simulation.
First, in Fig. 3, the impulse response from Fig. 1(a) is shifted to the
right by 12 samples after 3 seconds; then, at time 6 seconds, the
impulse response from Fig. 1(b) is used. Second, in Fig. 4, an abrupt
change of the impulse response from Fig. 1(c) is introduced after
3 seconds, by changing the sign of the coefficients; also, at time 6
seconds, the impulse response from Fig. 1(d) is involved.
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Fig. 5. Misalignment of the RLS algorithm (L = 1024) and RLS-NKP
algorithm (using L1 = L2 = 32 and P < L2), for the identification of the
impulse responses from Fig. 1(e). The input signal is a speech sequence and
the impulse response changes at time 5 seconds.

As we can notice in the first two parts of Fig. 3 [using the im-
pulse response from Fig. 1(a), with rank(H) = 3], the RLS-NKP
algorithm using P ≥ 3 achieves a similar initial convergence rate
and steady-state misalignment as the regular RLS algorithm, but it
performs better in terms of tracking. The same tracking reaction can
be observed in case of the RLS-NKP algorithm using P = 2, which
achieves a slightly higher misalignment level. Similar conclusions
result from the last part of Fig. 3, where the impulse response from
Fig. 1(b) is identified. However, since the rank of the matrix H is
higher in this case, the value of P should be larger, e.g., P = 5.
Also, the same better tracking reaction can be noticed in case of the
RLS-NKP algorithm as compared to its regular counterpart.

The results from Fig. 4 follow a similar pattern, even if the im-
pulse responses from Figs. 1(c) and (d) are less sparse. Basically,
the impulse response from Fig. 1(c) can be estimated using P = 3
[since rank(H) = 3], while the value of P should be higher in case
of the impulse response from Fig. 1(d), where rank(H) = 8.

Finally, the acoustic impulse response from Fig. 1(e) is identi-
fied, using a speech signal as input. The results are reported in Fig. 5,
where the RLS-NKP algorithm (using L1 = L2 = 32 and different
values of P ) is compared to the RLS algorithm (with L = 1024).
In this case, the matrix H is closer to full-rank, so that we obtain an
approximative solution when P < L2. However, a reasonable atten-
uation of the misalignment is achieved for a reasonable low value of
P (as compared to L2). Also, the tracking capabilities of the RLS-
NKP algorithm are better as compared to its regular counterpart.

5. CONCLUSIONS

In this paper, we have proposed the RLS-NKP algorithm, which ex-
ploits the nearest Kronecker product decomposition of the impulse
response, together with low-rank approximation. Consequently, this
algorithm is suitable for the identification of low-rank models, like
the echo paths. As compared to the regular RLS algorithm, the gain
of the proposed solution is twofold. First, the computational com-
plexity of the RLS-NKP algorithm could be much lower as com-
pared to its regular counterpart. Second, the tracking capabilities of
the proposed algorithm are better as compared to the conventional
RLS algorithm. Simulations performed in the context of echo can-
cellation support these advantages.
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