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Fraunhofer Heinrich Hertz Institute and Technical University of Berlin
Email: {renato.cavalcante, slawomir.stanczak}@hhi.fraunhofer.de

ABSTRACT

We propose novel approaches to identify the existence of fixed points
of the so-called weakly standard interference mappings, which in-
clude the well-known standard and general interference mappings as
particular cases. The approaches are based on the concept of spectral
radius of asymptotic mappings, a mathematical tool recently intro-
duced to study the behavior of wireless networks. We show that,
for arbitrary weakly standard interference mappings, knowledge of
the spectral radius of an associated asymptotic mapping gives a suf-
ficient condition to determine the existence of fixed points or their
absence in the positive orthant. If the mapping has a fixed point, we
further prove that the set of fixed points has a minimal element that
can be easily computed with a simple fixed point algorithm. The
theory developed here is applied to the problem of power control
for load planning in LTE networks. Unlike previous approaches in
the literature, the proposed solution takes into account the limited
number of modulation and coding schemes of practical transceivers.

Index Terms— Interference mappings, power control, asymp-
totic mappings, fixed point algorithms

1. INTRODUCTION

The problem of determining rate regions of some wireless networks
is known to be strongly related to the existence of fixed points of
special classes of nonnegative mappings [1–3], typically standard in-
terference mappings [4] or general interference mappings [1, 5] (see
Definition 1 in the next section). If we further restrict the mappings
to be affine, this existence problem is now well understood, and the
solutions are deeply rooted in linear algebra. However, extending
these existing results to more general problems involving nonlinear
mappings, as required in modern communication systems [1, 6–11],
has proven to be significantly difficult, as explicitly mentioned in [1,
Ch. 4.2]. Therefore, previous studies have restricted the attention to
particular cases of nonlinear mappings.

For example, in [1, Ch. 4.2] the existence problem has been stud-
ied for a class of log-concave mappings, and some results are based
on the existence of a matrix for which no simple construction method
is provided (see, for instance, [1, Theorem 4.22]). For a very specific
interference mapping that models interference in LTE networks, the
study in [10] has shown that the spectral radius of a matrix con-
structed from the mapping gives a necessary and sufficient condition
for the existence of the fixed point of the mapping. This result has
been shown in [11] to be a particular instance of a more general
approach able to determine the existence of fixed points of a large
subclass of positive concave mappings. More recently, the studies
in [7,8] have unified and generalized many of the schemes described
in [2, 10, 11]. In particular, [7, Proposition 2] or [8, Proposition 4]
shows a simple necessary and sufficient condition for a continuous

standard interference mapping to have a fixed point, and the con-
dition is often easy to verify in practice. However, the approaches
proposed in [7, 8] are not applicable to some interference models
in [1] involving general interference mappings. The reason is that,
although related, the sets of standard interference mappings and gen-
eral interference mappings are disjoint (see Definition 1 below), so
results involving the former mappings do not necessarily carry over
to the latter mappings (see Example 1 in Sect. 3).

Against this background, building upon the findings in [7,8], we
propose simple methods to determine the existence of fixed points
of a class of mappings that include both standard and general inter-
ference mappings as particular cases. For this class of mappings, we
further show a simple fixed point algorithm to compute the minimal
element of the set of fixed points, if this set is nonempty. As a con-
crete application of these results, we solve the problem of downlink
power control for load planning in OFDMA networks with rate con-
straints, and we note that the unconstrained version of this problem
has been addressed in [12] and later in [11].

2. PRELIMINARIES

In this section we establish notation and show the mathematical
tools used in the proof of the main results. In more detail, the
sets of nonnegative and positive reals are denoted by, respectively,
R+ and R++. Inequalities involving vectors should be understood
coordinate-wise. We say that a sequence (xn)n∈N ⊂ RN converges
to x? if limn→∞ ‖xn − x?‖ = 0 for some (and hence for every)
norm ‖ · ‖ in RN , and in this case we also write xn → x?.

The focus of this study is on functions belonging to the following
classes:

Definition 1. Consider the following possible statements for a con-
tinuous function f : RN

+ → R+:
[(i)] [monotonicity] (∀x ∈ RN

+ )(∀y ∈ RN
+ ) x ≥ y ⇒ f(x) ≥

f(y)

[(ii)] [nonnegative homogeneity] (∀x ∈ RN
+ ) (∀α ≥ 0)

αf(x) = f(αx)

[(iii)] [scalability] (∀x ∈ RN
+ ) (∀α > 1) αf(x) > f(αx).

[(iv)] [weak scalability] (∀x ∈ RN
+ ) (∀α ≥ 1) αf(x) ≥

f(αx).
If (i) and (ii) are satisfied, then f is said to be a general inter-

ference function [1]. If f satisfies (i) and (iii), then f is called a
standard interference function [4]. If f satisfies (i) and (iv), then f
is called a weakly standard interference function.

A mapping T : RN
+ → RN

+ : x 7→ [f1(x), . . . , fN (x)] is
said to be a standard interference (SI) mapping, a weakly standard
interference (WSI) mapping, or a general interference (GI) map-
ping if each coordinate function fi : RN

+ → R+ (i = 1, . . . , N )
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is, respectively, a standard function, a weakly standard interference
function, or a general interference function. For convenience, we
denote by FSI, FWSI, FGI the sets of, respectively, SI mappings,
WSI mappings, and GI mappings. By definition, all these mappings
are monotonic, in the sense that T : RN

+ → RN
+ ∈ FWSI satisfies

(∀x1 ∈ RN
+ )(∀x2 ∈ RN

+ ) x1 ≥ x2 ⇒ T (x1) ≥ T (x2). It follows
directly from the definition of the mappings that the sets FSI and
FGI are disjoint, and these two sets are proper subsets of FWSI.

The set of fixed points of a mapping T : RN
+ → RN

+ is denoted
by Fix(T ) := {x ∈ RN

+ | T (x) = x}. If T ∈ FSI, then Fix(T ) is
either a singleton or the empty set [4].

An important tool for the main results in this study is the notion
of asymptotic mappings, which has been recently introduced in [7,
8] and slightly extended in [13]. These mappings are defined as
follows:

Definition 2. Let T : RN
+ → RN

+ be a weakly standard interfer-
ence mapping. Its associated asymptotic mapping is the continuous

mapping given by T∞ : RN
+ → RN

+ : x 7→ limp→∞
1

p
T (px). 1

We can verify that asymptotic mappings are members of FGI

[8]; i.e., (∀T ∈ FWSI) T∞ ∈ FGI. Therefore, we can define a weak
notion of spectral radius for an arbitrary asymptotic mapping:

Definition 3. [14] The spectral radius ρ(T∞) of an asymptotic
mapping T∞ associated with T ∈ FWSI is defined by ρ(T∞) :=
sup{λ ∈ R+ | (∃x ∈ RN

+\{0}) T∞(x) = λx} ∈ R+.

We recall that there always existsx ∈ RN
+ satisfying ρ(T∞)x =

T∞(x) (see [15, Proposition 5.3.2(ii)] and [15, Corollary 5.4.2]).
Furthermore, the spectral radius of any asymptotic mapping T∞ can
be easily estimated with simple approaches [8, 13].

The next fact, which is crucial to the main contributions that
follow, is one of the results in [7,8] that has been used to characterize
the existence of fixed points of mappings T ∈ FSI.

Fact 1. [7, 8] Let T : RN
+ → RN

+ be a standard interference map-
ping. Then Fix(T ) 6= ∅ if and only if ρ(T∞) < 1.

Note that Fact 1 is especially useful if T is nonlinear with a
linear associated asymptotic mapping T∞. In this particular case,
to determine whether Fix(T ) 6= ∅, we only have to compute the
spectral radius of a nonnegative matrix. The study in [7] (see also
[8]) shows concrete problems in OFDMA networks in which this
interesting case occurs.

3. FIXED POINTS OF WEAKLY STANDARD
INTERFERENCE MAPPINGS

In this section, we provide partial generalizations of known results
related to SI mappings. As shown later in this study, these general-
izations are useful in applications involving interference models for
which previous mathematical tools in the wireless literature are not
applicable. To motivate the work, we start with simple examples il-
lustrating that known properties of SI mappings do not necessarily
carry over to arbitrary WSI mappings.

Example 1. Consider the WSI mappings given by T ′ : R+ →
R+ : x 7→ x and T ′′ : R+ → R+ : x 7→ x + 1. Note that
ρ(T ′

∞) = ρ(T ′′
∞) = 1. In addition, Fix(T ′) = R+ and Fix(T ′′) =

∅. This example illustrates that, unlike SI mappings, the set of fixed

1Existence of the limit and continuity of asymptotic mappings associated
with continuous WSI mappings have been proved in [8].

points of WSI mappings is not a singleton or the empty set in general.
Furthermore, unlike the result in Fact 1 for SI mappings, knowledge
of ρ(T∞) does not give a sufficient and necessary condition for the
existence of fixed points of general WSI mappings.

As it is now clear from Example 1, to gain information about
the existence of fixed points from the spectral radius of asymptotic
mappings, we need additional assumptions in the statement of Fact 1
if we replace SI mappings with the more general class of WSI map-
pings. In the remainder of this section, we show results that enable
us to identify simple cases in which the spectral radius of asymptotic
mappings provides us with information about the existence of fixed
points of arbitrary WSI mappings. We also show that the standard
fixed algorithm enables us to compute the minimal element of the
set of fixed points, if this set is nonempty (see Proposition 3). To
derive these results, we need the following two simple lemmas. [We
omit the proof of Lemma 1 because it is analogous to similar results
in the literature (see, for example, [4]).]

Lemma 1. Let T : RN
+ → RN

+ be an arbitrary continuous mono-
tonic mapping. Denote by (xn)n∈N the sequence generated by
xn+1 = T (xn), where x1 ∈ RN

+ is arbitrary. Then each of the
following holds:

(i) If T (x1) ≥ x1, then (xn)n∈N is nondecreasing in each
component. Furthermore, the sequence (xn)n∈N either con-
verges or increases unboundedly in norm (i.e., for any norm
‖ · ‖, we have limn→∞ ‖xn‖ =∞).

(ii) If T (x1) ≤ x1, then Fix(T ) 6= ∅ and (xn)n∈N is non-
increasing in each component. In addition, the sequence
(xn)n∈N converges to a fixed point of T .

Lemma 2. Let T1 : RN
+ → RN

+ and T2 : RN
+ → RN

+ be arbitrary
continuous monotonic mappings. Assume that (∀x ∈ RN

+ ) T1(x) ≤
T2(x). If Fix(T2) 6= ∅, then Fix(T1) 6= ∅.

Proof. Let x? ∈ Fix(T2). By assumption, we have T1(x
?) ≤

T2(x
?) = x?. The desired result Fix(T1) 6= ∅ now follows from

Lemma 1(ii).

We are now ready to prove that knowledge of ρ(T∞) < 1 is a
sufficient condition for a mapping T ∈ FWSI to have at least one
fixed point.

Proposition 1. Let T : RN
+ → RN

+ be a WSI mapping. If ρ(T∞) <
1, then Fix(T ) 6= ∅.

Proof. Define T ′ : RN
+ → RN

++ : x 7→ T (x) + 1, where 1 denotes
the vector of ones. Given an arbitrary scalar α > 1 and a vector
x ∈ RN

+ , we verify from the definition of WSI mappings that 0 <
T ′(αx) = T (αx) + 1 ≤ αT (x) + 1 < α(T (x) + 1) = αT ′(x),
which shows that T ′ ∈ FSI. We also have (∀x ∈ RN

+ ) T∞(x) =
T ′
∞(x). Therefore, ρ(T ′

∞) = ρ(T∞) < 1, which by Fact 1 im-
plies Fix(T ′) 6= ∅. The desired result Fix(T ) 6= ∅ is now immedi-
ate from Lemma 2 because, by construction, (∀x ∈ RN

+ ) T (x) ≤
T ′(x).

Proposition 1 may not be always satisfactory because it does not
rule out the possibility of fixed points on the boundary bd(RN

+ ) :=

RN
+\RN

++, which may be undesirable fixed points in some (but not
all) applications. For example, if the fixed point is a power vector
for radios that need to be active, then a fixed point on bd(RN

+ ) could
imply that a transmitter should communicate with zero power, which
is clearly not possible. To rule out the possibility of fixed points
only on bd(RN

+ ), we need additional assumptions, and the following
corollary of Proposition 1 will be useful in the application described
in Sect. 4.
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Corollary 1. Let T : RN
+ → RN

+ be a WSI mapping satisfying
ρ(T∞) < 1. If (∀x ∈ RN

+ )(∃m ∈ N) Tm(x) > 0, then ∅ 6=
Fix(T ) ⊂ RN

++.

Proof. It follows from Proposition 2 that T has at least one fixed
point. From the assumptions of the corollary, for an arbitrary fixed
point x? ∈ Fix(T ), we have x? = Tm(x?) > 0 for some m ∈ N.
This inequality completes the proof.

For the case ρ(T∞) > 1, we have the following result.

Proposition 2. If the asymptotic mapping T∞ : RN
+ → RN

+ associ-
ated with a WSI mapping T : RN

+ → RN
+ satisfies ρ(T∞) > 1, then

T has no fixed point in RN
++; i.e., Fix(T ) ∩ R++ = ∅.

Proof. Assume for the sake of contradiction that ρ(T∞) > 1 and
there exists x? ∈ RN

++ such that x? = T (x?). Then, by us-
ing Definition 2 and arguments similar to those in the proof of [16,
Lemma 1(ii)], we can show that T∞(x?) ≤ T (x?) = x?, which
implies ρ(T∞) ≤ 1 by [14, Theorem 3.1(1)]. This inequality con-
tradicts the assumption ρ(T∞) > 1, and the proof is complete.

Although WSI mappings need not have a unique fixed point, we
can show that there exists a minimal fixed point by considering the
partial ordering induced by the nonnegative cone RN

+ . This minimal
point can be easily obtained with the standard fixed point iteration
xn+1 = T (xn) by starting from x1 = 0. These results are formally
stated in the next proposition.

Proposition 3. Let T : RN
+ → RN

+ be a WSI mapping satisfying
ρ(T∞) < 1. Then (∃x? ∈ Fix(T ))(∀y ∈ Fix(T )) x? ≤ y.
In addition, this minimal fixed point x? is the limit of the sequence
(xn)n∈N generated by xn+1 = T (xn) with x1 = 0.

Proof. By Proposition 1, we know that Fix(T ) 6= ∅. Let the se-
quence (xn)n∈N be generated as stated in the proposition, and let
y ∈ Fix(T ) be arbitrary. By 0 ≤ y, it follows from monotonicity
of T that

(∀n ∈ N) xn+1 = Tn(0) ≤ Tn(y) = y, (1)

which in particular implies boundedness of (xn)n∈N. Furthermore,
we have x1 = 0 ≤ T (0), so (xn)n∈N converges to a point x? ∈
Fix(T ) ⊂ RN

+ as an implication of Lemma 1(i). Passing to the
limit as n → ∞ in (1), we obtain x? ≤ y. Since the choice of
y ∈ Fix(T ) is arbitrary, the fixed point x? is minimal, and the proof
is complete.

From a practical perspective, Proposition 3 is important for the
following reason. In wireless resource allocation tasks, if the ar-
gument of a mapping T ∈ FWSI has the interpretation of power
of base stations, and the fixed points determine feasible power con-
figurations, then the minimal element of Fix(T ) is the configuration
able to satisfy the requirements of the network with the minimum to-
tal power. We formalize this simple fact in the next corollary, which
is immediate from Proposition 3.

Corollary 2. Let T ∈ FWSI and f : RN
+ → R be an arbitrary

function satisfying (∀x ∈ RN
+ )(∀y ∈ RN

+ ) x ≥ y ⇒ f(x) ≥
f(y). Then the minimal fixed point x? described in Proposition 3 is
a solution to the following optimization problem:

minimizex f(x)
s.t. x ∈ Fix(T )

(2)

4. POWER CONTROL IN OFDMA NETWORKS WITH
LIMITED NUMBER OF MODULATION AND CODING

SCHEMES

We now apply the results in the previous section to the problem of
downlink power control for load planning in OFDMA networks. In
Sect. 4.1 we describe an existing interference model with rate con-
straints. Sect. 4.2 formalizes the novel power control problem and
describes the proposed algorithm. Sect. 4.3 shows the performance
of the proposed approach in a particular scenario.

4.1. System model

We consider a scenario where N base stations transmit data to M
users. The set of base stations and users are denoted by, respectively,
N := {1, . . . , N} andM := {1, . . . ,M}, and each user requests
the downlink rate dj , j ∈M. As common in OFDMA networks, the
time and frequency grid is divided into K ∈ N units called resource
blocks. Each base station serves at least one user, and the set of
users connected to base station i ∈ N is denoted by Mi ⊂ M.
The effective gain of the wireless path between base station i ∈ N
and user j ∈ M is denoted by gi,j ∈ R++. Each base station
i ∈ N transmits with power pi ∈ R++ per resource block, and,
using standard simplifications to make the mathematical problems
tractable [9, 10, 12, 17–20], we assume that this power is the same
across all resource blocks. We denote by p := [p1, . . . , pN ] ∈ RN

+

the transmit power vector. The load ρi ∈ ]0, 1] of base station i ∈
N is defined as the fraction of the K resource blocks that the base
station uses for data transmission, and we collect the load of each
base station in the vector ρ = [ρ1, . . . , ρN ] ∈ ]0, 1]N . If the load
ρ is known for a given power allocation p ∈ RN

++, the achievable
rate per resource block of a link connecting base station i ∈ N to
user j ∈ M is assumed to be given by ωi,j(p) = min {ci,j(p), u},
where

ci,j(p) := B log2

(
1 +

pigi,j∑
k∈N\{i} ρkpkgk,j + σ2

)

is the achievable rate of the link between base station i and user
j, σ2 ∈ R++ is the noise per resource block, B ∈ R++ is the
bandwidth of each resource block, and u ∈ R++ is the maximum
rate that we can achieve in a resource block because of the limited
number of modulation and coding schemes [7–9, 18]. If the power
p ∈ RN

++ induces the load ρ ∈ ]0, 1]M in the network, then it
follows from the definition of load that the load ρi at base station
i ∈ N is given by

ρi =
∑

j∈Mi

dj
Kωi,j(p)

> 0. (3)

4.2. Problem statement and proposed solution

Having introduced the system model, we can now informally state
the power estimation problem as follows: given a desired load allo-
cation ρ ∈ ]0, 1]N , we have to estimate the power vector p ∈ RN

++

inducing this load, if it exists. In the remainder of this subsection,
we show that this problem can be formally posed as a fixed point
problem involving a WSI mapping.

In more detail, assuming that (3) holds, we can multiply both
sides of (3) by pi/ρi for each i ∈ N to obtain:

pi =
∑

j∈Mi

max

{
g′i,j(p),

pi dj
ρi u

}
=: t′ρ,i(p), (4)
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where g′i,j : RN
++ → R+ : p 7→ pi dj/(ρi Kci,j(p)) for each

i ∈ N and j ∈ M is a positive concave function [19, 21, 22] (and
thus a SI function [11, Proposition 1]). Equation (4) shows that, for
a given load vector ρ ∈ ]0, 1]N , the power inducing this load, if
it exists, is the fixed point of the nonlinear mapping given by T ′

ρ :

RN
++ → RN

+ : p 7→ [t′ρ,1(p) · · · t′ρ,N (p)].
We can show that, in the positive cone RN

++, the mapping T ′
ρ

is monotonic and weakly scalable because these properties are pre-
served by taking positive sums and coordinate-wise maximum of
mappings with these properties. Furthermore, for any ρ ∈ ]0, 1]N ,
the mapping T ′

ρ : RN
++ → RN

+ is continuous, so, to apply the the-
ory developed in the previous sections, we only need to extend T ′

ρ

continuously to the domain RN
+ . The existence of this continuous

extension, which we denote by Tρ : RN
+ → RN

+ ∈ FWSI, fol-
lows from [15, Theorem 5.1.5]. To obtain the values Tρ(p) for
p ∈ bd(RN

+ ), we can use the same approach used in the proof of [22,
Lemma 3], but we omit the details because of the space limitation.
By doing so, we verify that (∀p ∈ RN

+ )(∀ρ ∈ RN
+ )Tρ(p) > 0, so,

by Corollary 1, we have ∅ 6= Fix(T ) ⊂ RN
++ if ρ((Tρ)∞) < 1.

Moreover, in light of Proposition 2, we also know that Fix(T ) = ∅
if ρ((Tρ)∞) > 1.

The above shows that the spectral radius ρ((Tρ)∞) of (Tρ)∞
is a convenient means of identifying feasibility in many practical
cases. Once we certify that Fix(Tρ) 6= ∅ for the desired load vec-
tor ρ ∈ ]0, 1]N , we can proceed to compute the power allocation
p? ∈ Fix(Tρ) with the minimum total transmit power ‖p?‖1; i.e.,
compute the solution to the optimization problem in (2) with the
l1 norm as the objective function f : RN

+ → R+ : x 7→ ‖x‖1.
By Corollary 2, this power allocation is the limit of the sequence
(pn)n∈N generated with the fixed point algorithm

pn+1 = Tρ(pn), p1 = 0. (5)

Before we proceed with a numerical example, we highlight some
key points that distinguish the results shown here from those in pre-
vious studies. First, unlike the mappings in [12,19,22,23], the map-
ping used here can have multiple fixed points. Second, the proposed
iteration highlights the need to start the iterations in (5) from p1 = 0,
which is possible because we have extended the mapping T ′

ρ contin-
uously to the boundary of its domain. In particular, we do not neces-
sarily obtain the minimal power allocation by starting the fixed point
algorithm from arbitrary points p1 ∈ RN

+ . Third, in the application
described above, we cannot apply the mathematical tools for feasi-
bility assessment described in [7, 8], which justifies the need for the
results in Sect. 3.

4.3. Simulations

In the numerical example, unless otherwise explicitly stated, we used
the same parameters of the network described in [11, Sect. V-B] (see,
in particular, [11, Table I]). The main differences in the numerical
example shown here from that in [11, Sect. V-B] are (i) the number of
users and their rate requirements (here we simulatedM = 400 users
requesting 100 kbits/s), and (ii) in the current simulations each re-
source block was limited to a maximum of u = 200 kbits/s. To guar-
antee the existence of the fixed point of Tρ with ρ = 1 (1 denotes
the vector of ones), we sampled the random variables of the model
described in [11, Sect. V-B] until ρ((Tρ)∞) < 1. The spectral radius
of (Tρ)∞ was computed with the scheme in [13, Sect. 3.1].

In Fig. 1 we show the power obtained with the fixed point algo-
rithm in (5) and the power that we obtain with the fixed point algo-
rithms in [11, 12, 22] to induce the load ρ = 1. We show only one
curve for the approaches in [11,12,22] because these existing meth-
ods compute the same power allocation, and they differ in their com-
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Fig. 1. Power per resource block obtained by solving the fixed point
algorithm with and without maximum rate constraints.
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Fig. 2. Load induced with the power allocation computed with the
fixed point algorithms. Maximum rate per resource block bounded
by 200 kbits/s.

putational complexity and convergence speed. However, they do not
consider rate constraints, so the transmit power computed with these
previous schemes is lower than that obtained with iteration in (5),
as verified in Fig. 1. By using the power allocation computed with
the fixed point algorithms in a network with bounds on the rate per
resource block, we verify in Fig. 2 that the load obtained with the ap-
proaches in [11,12,22] is greater than one at every base station. This
fact shows that the network configuration obtained with the previ-
ous algorithms is unable to support the traffic demand [9,10,17,18].
In contrast, the power allocation obtained with the iteration in (5),
which takes into account rate constraints, induces the desired load
ρ = 1 at every base station, as expected.

5. SUMMARY AND FINAL REMARKS

We have shown that the concept of asymptotic mappings, which has
already been successfully used to characterized the existence of fixed
points of SI mappings, can also be used to verify the existence of
fixed points of the more general class of WSI mappings. The the-
ory developed here has been applied to the problem of power allo-
cation in OFDMA networks with maximum rate constraints on the
resource blocks. In particular, these constraints model the limited
number of modulation and coding schemes of practical networks.
Previous results in the literature are not applicable to the resulting
interference model, and we have shown that these previous methods
underestimate the power of base stations. As a consequence, they
obtain network configurations that may not be able to support the
traffic demand, unlike the configurations obtained with the proposed
algorithm.
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U. Türke, “Toward energy-efficient 5G wireless communication tech-
nologies,” IEEE Signal Processing Mag., vol. 31, no. 6, pp. 24–34,
Nov. 2014.

[10] Ioana Siomina and Di Yuan, “Analysis of cell load coupling for LTE
network planning and optimization,” IEEE Trans. Wireless Commun.,
vol. 11, no. 6, pp. 2287–2297, June 2012.

[11] Renato L. G. Cavalcante, Yuxiang Shen, and Slawomir Stańczak, “El-
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[13] R. L. G. Cavalcante and S. Stanćzak, “Spectral radii of asymptotic map-
pings and the convergence speed of the standard fixed point algorithm,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2018.

[14] Roger D Nussbaum, “Convexity and log convexity for the spectral
radius,” Linear Algebra and its Applications, vol. 73, pp. 59–122, 1986.

[15] B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius theory,
Cambridge University Press, Cambridge, UK, 2012.
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