
LOW-COMPLEXITY DETECTION AND PERFORMANCE ANALYSIS FOR
DECODE-AND-FORWARD RELAY NETWORKS

Yuxin Lu and Wai Ho Mow

Hong Kong University of Science and Techonology

ABSTRACT

We re-examine the problem of designing low-complexity de-
tectors and their performance analysis for the 3-node one-
way decode-and-forward (DF) relay network, where the des-
tination has the statistical channel state information (CSI) of
the source-relay link, and the instantaneous CSI of both the
source-destination and relay-destination links. Recently pro-
posed detection schemes, such as the piece-wise linear de-
tector (PLD), achieve near-optimal error performance with
linear complexity (with respect to the modulation size). In
this paper, we propose two new detectors with near-optimal
error performance. One has linear complexity for general
modulations and the other has constant complexity for PAM
signals. Additionally, an algorithm for computing the upper
bound on the symbol error rate (SER) of the new detectors
for the static source-destination and relay-destination links is
proposed. Simulation results are presented to verify the effi-
ciency of the proposed detectors and the tightness of the pro-
posed SER bound.

Index Terms— Relay networks, decode-and-forward,
low complexity detection, performance analysis

1. INTRODUCTION

Relay-assisted cooperative communication, introduced by
van der Meulen [1], has been recognized as an effective tech-
nique for increasing the transmission rate [2], [3], [4]. There
exist various relaying protocols, among which the amplify-
and-forward (AF) and decode-and-forward (DF) relaying are
two main protocols [5], [6]. Unlike the AF protocol that pre-
serves a linear input-output relationship, in the DF protocol,
the hard demodulation operation performed at the relay com-
plicates the detector design and the associated performance
analysis.

In this work, we are interested in the scenario that the des-
tination has the instantaneous channel state information (CSI)
of both the source-destination and relay-destination links, and
only the statistical CSI of the source-relay link in the 3-node
one-way DF relay network. One remark is that the results are
not restricted to this protocol only [7]. In this scenario, [8]
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proposes an almost maximum likelihood detector (AMLD)1

and a piece-wise linear detector (PLD), with quadratic and
linear complexity2, respectively, to achieve near-optimal error
performance. These two detectors are the state-of-the-art for
the underlying system model, to the best of our knowledge.
The derivations of such detectors involve several approxima-
tions such as the nearest neighbor approximation to simplify
the SER expressions [8], [9], [10].

The main contributions of this paper are as follows:
1) Two new detectors are proposed. One is the maximum
AMLD (MAMLD), which has linear complexity for the gen-
eral case of any M -ary modulation. The other is the near
maximum likelihood detector (NMLD) with constant com-
plexity for the case of M -PAM. 2) An algorithm for com-
puting the SER upper bound for both MAMLD and NMLD
for the case of static source-destination and relay-destination
links is proposed. Additionally, our simulation results show
that the bound is tight in the high SNR regime.

2. SYSTEM MODEL AND EXISTING WORKS

2.1. System Model

Consider the 3-node DF relay network with one source (S),
one relay (R) and one destination (D). R works in the half-
duplex mode. We also assume perfect channel knowledge at
R. However, D is assumed to have the instantaneous CSI of
the S-D and R-D links and only the statistical CSI of the S-
R link. Time division multiplexing (TDM) is performed and
one transmission session consists of two time slots. In the first
time slot, S broadcasts its signals to R and D. In the second
slot, S remains silent while R performs detection and trans-
mits the detected symbols to D.

Assume that S selects and transmits symbols with equal
probability from the alphabet X of an M -ary constellation.
The received signals at all the nodes are modeled as yX,Y =
hX,YxX + nX,Y, where X,Y ∈ {s,d, r} denote the trans-
mitting and receiving nodes, respectively, xX is the trans-
mitted symbol of node X, and hX,Y is the complex chan-
nel coefficient between link X and Y. It is also assumed

1The proposed MLD in [8] is referred to here as AMLD. Because its
derivation involves some approximations, which will be detailed in Sec 2.2.

2We describe the complexity order with respect to the modulation size.
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that the noise nX,Y is the circularly symmetric complex ad-
ditive white Gaussian noise (AWGN) with zero mean, i.e.,
nX,Y ∼ CN (0, NX,Y). It is further assumed that the optimal
maximum likelihood detector (MLD) is adopted at R.

2.2. Almost Maximum Likelihood Detector

The maximum likelihood detection scheme should maximize
the conditional joint probability density of the received data
as: maxxs∈X Pr(ys,d|xs)

∑
xr∈X Pr(xr|xs) Pr(yr,d|xr).

The AMLD is obtained by approximating the transition prob-
ability term Pr(xr|xs) using the average SER of the detector
at R, denoted as ε. Further, [8] assumes R erroneously de-
codes one symbol as any other symbol with equal probability
to get their AMLD. Note that no performance analysis of the
AMLD is given in [8], [10].

2.3. Piece-wise Linear Detector

AMLD has quadratic complexity since we need to enumer-
ate over (xs, xr) ∈ X 2, then the authors in [8] make several
approximations to simplify it and obtain a linear complex-
ity PLD. More specifically, to simplify the detection metric,
the summations of some exponential terms (Gaussian mixture
random variables [11]) are neglected, and the piece-wise lin-
ear approximation is made. The SER performance of PLD is
shown to approach the AMLD in their simulation section.

The performance analysis specialized for PLD is provided
in [8] and [10]. However, firstly they assume the transmit-
ted symbol is wrongly decoded to only its nearest neighbors,
which is the so-called nearest neighbor approach, to obtain
the analytical SER expression. This is justified in traditional
point-to-point channels [12] but not the DF relay network due
to its non-linearity. Secondly the simulation results of the ana-
lytical SER expression are only shown for the Rayleigh fading
links but not the static S-D and R-D links.

2.4. AMLD with Max Approximation

Here, we apply the widely-used max-log approximation [4],
[13], [14], [15] to approximate the probability terms of the
S-R-D link, which is the summation of M exponentials. Cor-
respondingly, the following sub-optimal detection rule is ob-
tained, in (1), with little loss of performance compared to
AMLD, where η , log (1−ε)(M−1)

ε .

x̂s =arg min
xs∈X

{
|ys,d − hs,dxs|2

Ns,d
+min

{
|yr,d − hr,dxs|2

Nr,d
,

min
xr∈X ,xr 6=xs

|yr,d − hr,dxr|2

Nr,d
+ η

}}
(1)

3. PROPOSED DETECTORS

In this section, the proposed MAMLD and NMLD are intro-
duced. MAMLD can be applied to general M -ary modula-

tions with linear complexity, and NMLD can be applied to
M -PAM with constant complexity.

3.1. Detector at the Relay

The MLD at R is solving xr = argminxs∈X |ys,r−hs,rxs|2,
which is well established and studied for arbitrary constel-
lations in point-to-point channels [12]. It is simply a least
square problem with discrete inputs. The specific lattice
structure of the PAM signal can be utilized and it is straight-
forward to obtain a closed-form solution by slicing and trans-
lation operations as

xr = 2

⌊<{y∗s,rhs,r}
2|hs,r|2

+
M + 1

2

⌉
M

− (M + 1), (2)

where we explicitly define the alphabet X , {−(M −
1), · · · ,−1, 1, · · · ,M − 1} and the slicing operation as
bneM , argminm∈Z,m∈[1,M ] |n − m|, and Z is the inte-
ger set. In this way, the detection at R will be very efficient,

3.2. Proposed Detectors at the Destination

We focus on (1) and develop the proposed detectors. Based on
the observation that |yr,d−hr,dxs|2

Nr,d
<
|yr,d−hr,dxs|2

Nr,d
+ η holds

when η > 0, i.e., when 1−ε > 1/M , which is generally true,
we can remove the constraint xr 6= xs and get the proposed
MAMLD in (3):

x̂s =arg min
xs∈X

{
|ys,d − hs,dxs|2

Ns,d
+min

{
|yr,d − hr,dxs|2

Nr,d
,

|yr,d − hr,dsr|2

Nr,d
+ η

}}
, (3)

where sr = 2
⌊
<{y∗

r,dhr,d}
2|hr,d|2 + M+1

2

⌉
M
− (M + 1). This has

linear complexity for the general case of any M -ary modula-
tion since we only need to enumerate over xs ∈ X .

Then we exploit the advantage that the min operations are
exchangeable and get the proposed NMLD for PAM signals
in (4):

x̂s =argmin

{
min

x∈X 2,xs=xr

f(x), min
x∈X 2

f(x) + η

}
, (4)

where f(x) , ‖y−Hx‖2, y =
[
Re{y∗

s,dhs,d}
|hs,d| ,

Re{y∗
r,dhr,d}
|hr,d|

]T
,

H =

[
|hs,d| 0
0 |hr,d|

]
, x = [xs, xr]

T , and y ∼ N (Hx,Σ)

with Σ = 1
2

[
Ns,d 0
0 Nr,d

]
, 1

2I for ease of presentation and

without loss of generality.
The decision rules for our NMLD are defined as: x̂s = s0

if f([s0, s0]T ) < f([s1, sr]
T ) + η, and x̂s = s1 other-

wise, where s0 , argminx∈X 2,xs=xr
f(x), (s1, sr) ,

argminx∈X 2 f(x). Essentially to get s0, s1, sr, we only
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need to solve three point-to-point channel detection problems
similar to (2) with different equivalent channel coefficients
and observations. Therefore, the complexity of the proposed
detector is invariant of the modulation size.

4. SER UPPER BOUND FOR PROPOSED
DETECTORS

In this section, the SER upper bound is analyzed for M -PAM
in the case when the channel coefficients of the S-D and R-D
links are static. Note that since the SER performance of the
NMLD is essentially the same as the MAMLD, our proposed
bound is for both detectors, while the performance analysis
in [8] and [10] is only for the PLD, not their proposed AMLD.

4.1. Pairwise Error Distance

We re-include the constraint xs 6= xr, then (4) is essentially a
two-dimensional lattice decoding problem with Hx as the lat-
tice points, and y as the observations. Geometrically, assume
a and b are two distinct points with metric offset lX, then we
have lX = η if xs 6= xr, and 0 otherwise, for X ∈ {a,b}. The
distance from the interest point a to the decision boundary of
a and b can be calculated as:

d(a,b) =
‖b− a‖

2
+

lb − la
2‖b− a‖

. (5)

Using d(a,b), the pairwise error probability (PEP) for decod-
ing a as b is given by Q(d(a,b)/σ), where σ2 = 1/2 is the
one-dimensional noise variance.

As mentioned earlier, existing works make several ap-
proximations to calculate the analytical SER [8] [10]. Here
we give a more efficient way to verify the performance of our
proposed schemes without making additional approximations
by properly selecting a set which covers the Voronoi-relevant
neighbor set (the definition is illustrated in [16]) of the interest
point and using these sets to calculate the SER upper bound
instead of the exact SER.

4.2. SER Upper Bound

For symmetry, only the lower triangular points are consid-
ered. We divide those points into M layers, the diagonal as
layer-0, the second-diagonal as layer-1, etc. Points on layer-k
(k ∈ [0,M − 1]) are labeled as Ak,j , where j ∈ [1,M − k]
is indexed from right to left. Points with j ∈ {1,M − k} are
referred to as outer points while the rest are inner points. The
labeling rules are illustrated in Fig. 1. For the diagonal points,
the layer index k is omitted.

Here, we define Vk,j = Vd
k,j∪Vnd

k,j as the Voronoi-relevant
cover set of Ak,j , where Vd

k,j and Vnd
k,j contain the diagonal

and non-diagonal neighbors, respectively.
It is obvious that for the diagonal pointAi, Vd

i can be cho-
sen containing its geometrically nearest diagonal neighbors.

Fig. 1: Example of the labeling of the lower triangular points in case
of 4-PAM. The black and white ones denote the diagonal and non-
diagonal lattice points, respectively.

Algorithm 1: A high-level description of the algo-
rithm

Input: hs,d, hr,d, η, M , rd, rnd,Wi, i ∈ [1,M ], vk,j ,
k ∈ [1,M − 1], j ∈ [1,M − k]

Output: Vnd
i , i ∈ [1,M ],
Vd
k,j , k ∈ [1,M − 1], j ∈ [1,M − k]

/* Procedure 1: update Vnd
i based on

selection condition 1 */

1 for i = 1 : M do
2 for (m,n) ∈ Wi do
3 if dd(m,n) < rd then
4 Vnd

i ← Vnd
i ∪ (m,n) ;

/* Procedure 2: update Sk and Ik */

5 for k = 1 : M − 1 do
6 for m = (1−M) : (M − k − 1) do
7 update Sk and Ik;

/* Procedure 3: update Vd
k,j based on

selection condition 2 */

8 for k = 1 : M − 1 do
9 for j = 1 : M − k do

10 for m ∈ vk,j do
11 update Vd

k,j ;

Similarly, for the non-diagonal pointAk,j , Vnd
k,j can be chosen

containing its geometrically nearest non-diagonal neighbors.
Therefore, the algorithm we propose only aims to find Vnd

i

and Vd
k,j , which is sufficient.

The idea is that we first define the original decision region
of the interest point using at most four its geometrically near-
est neighbors. Then a neighbor will be selected into the cover
set if it satisfies the selection condition which will be defined
later. The complete procedure is presented in Algorithm 1
to determine the non-diagonal neighbor sets for the diagonal
points, and the diagonal neighbor sets for the non-diagonal
points. We give some definitions in the following to support
it.

Procedure 1 is to determine the non-diagonal neighbor
sets for the diagonal points. Assume b = 2H[m,n]T with
(m,n) ∈ Z2 is the vector representation of the non-diagonal
point with the interest diagonalAi as the origin. Adopting (5)
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and set a = 0, the distance fromAi to the boundary produced
by b is d(0,b) = ‖b‖/2 + η/(2‖b‖) , dd(m,n). With A1

as the origin, W1 , {(m,n) : (m,n) ∈ Z2, (2 − M) ≤
m ≤ 0, (1 − M) ≤ n ≤ (m − 1)} denotes the offsets of
all lower triangular non-diagonal points. Wi , {(m,n) :
(m− (i−1), n− (i−1)) ∈ W1} is defined analogically with
Ai as origin.

The original decision region for the inner diagonal points
is generated using its four geometrically nearest non-diagonal
points. The region is a rectangle whose minimal circumcir-
cle has radius rd =

√
dd(1, 0)2 + dd(0,−1)2, and similarly

for the outer points. The selection condition 1 is defined as
dd(m,n) < rd for diagonal points. Here we omit the proof.
Vnd
i contains the pairs of (m,n) ∈ Wi that satisfy selection

condition 1.
Procedures 2 and 3 are to determine the diagonal neighbor

sets for the non-diagonal points. Assume b = 2H[m,m+k]T

is the vector representation of Ai, i ∈ [1,M ] with the interest
non-diagonal Ak,j as the origin. Adopting (5) and set a =
0, the distance from Ak,j to the boundary produced by b is
d(0,b) = ‖b‖/2− η/(2‖b‖) , dnd(m,m+ k).

The original decision region is obtained by assuming
equal prior information. Similar to the diagonal case, it
is a rectangle whose minimal circumcircle is with radius
rnd =

√
|hs,d|2 + |hr,d|2.

With Ak,j as the origin, vk,j , [j − M, j − M +

1, · · · , j − 1] contains the values of m for A1-AM . Uk ,
∪j∈[1,M−k]vk,j = {m : (1 −M) ≤ m ≤ (M − k − 1)} is
defined accordingly, all layer-k points considered. Addition-
ally, two sets are defined: Sk = {m ∈ Uk : dnd(m,m+ k) ∈
(−rnd, rnd)}, Ik = {m ∈ Uk : dnd(m,m + k) < −rnd}.
Note that Sk ∩ Ik = ∅. The defined selection condition
2 for (m,m + k) for the outer points is m ∈ (Sk ∪ Ik),
and for the inner points is m ∈ Sk. Vd

k,j contains pairs of
(m,m+ k),m ∈ vk,j that satisfy selection condition 2.

After obtaining all the cover sets for all the lower-
triangular points, the SER upper bound can be calculated
accordingly: Pu

SE = 1−ε
M Pu

SE,d + ε
M(M−1)P

u
SE,nd, where

Pu
SE,d = 2

∑M
i=1

∑
(m,n)∈Vnd

i ,
m6=0

Q(dd(m,n)/σ) + 2(M −

1)Q(d0(1, 1)/σ), Pu
SE,nd = 2

∑M−1
k=1

∑M−k
j=1 [

∑
(m,n)∈Vd

k,j ,

m 6=0

Q(dnd(m,n)/σ)+
∑

(m,n)∈Vnd
k,j ,

m 6=0

Q(d0(m,n)/σ)], d(0,b) =

1
2‖b‖ , d0(m,n) in the case that the interest point and b are
both diagonal or non-diagonal.

5. SIMULATION RESULTS

In this section, the simulation results are shown to verify the
efficiency and near-optimal SER performance of the proposed
detectors and also the tightness of the proposed bound with a
Rayleigh fading S-R link and static R-D and S-D links.
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Fig. 2: Comparisons of various detectors and the proposed SER
bound for the 3-node DF relay network with M-PAM based on (a)
average run-time per symbol; (b) SER.

As shown in Fig. 2, for not too small M , the runtimes
of the proposed MAMLD and NMLD are linear and invari-
ant with M , respectively, while those of AMLD and PLD are
quadratic and linear with M , respectively. The simulation
results agree with our complexity order analysis. Addition-
ally, the SER performance of NMLD approaches that of the
AMLD, and the proposed bound is quite tight in the high SNR
regime.3

6. CONCLUSION

We have proposed two near-optimal detectors, MAMLD and
NMLD, with linear complexity for the general case of any
M -ary modulation and constant complexity for the case of
M -PAM, respectively, in the 3-node DF relay network. Their
SER performance and complexity are compared favorably
with the state-of-the-art detectors AMLD and PLD. Addi-
tionally, an SER bound is derived to analytically characterize
the performance of the proposed detectors, and it is shown to
be rather tight in the high SNR regime.

3The proposed MAMLD has the same SER performance as the pro-
posed NMLD, and hence only the simulation results of the latter is shown
in Fig. 2(b).
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