
COMPLEMENTARY SEQUENCE ENCODING FOR 1D AND 2D CONSTANT-MODULUS
OFDM TRANSMISSION AT MILLIMETER WAVE FREQUENCIES

Kyle Willstatter, Michael D. Zoltowski

School of Electrical and Computer Engineering, Purdue University
West Lafayette, Indiana

ABSTRACT

This paper develops a method for constructing an OFDM sig-
nal from a pair of complementary sequences so that the re-
sulting signal is constant-modulus. A recursive method of
constructing complementary sequences is developed such that
the length of the signal grows linearly with the number of in-
formation symbols encoded. The constant-modulus property
is exploited at each stage of the backwards symbol-decoding
iteration through simple means to progressively reduce noise.
For diversity comparing purposes, the new scheme is com-
pared in symbol and frame error rates to m-PSK transmission
with time-diversity in AWGN. The constant-modulus signal
construction is then extended to two dimensions for the mo-
tivating application where we expect this work to have the
greatest impact: massive MIMO at mmWave frequencies.

Index Terms— Complementary sequences, OFDM, con-
stant modulus, massive MIMO, mmWave

1. INTRODUCTION

There is significant prior work regarding the development
of information-carrying, complementary sequences for use
in conjunction with OFDM to reduce the Peak-to-Average
Power Ratio (PAPR) [1],[2]. In this paper, we present a novel
scheme for how to map the sequence values of the comple-
mentary pair to even and odd carrier frequencies to form a
truly constant-modulus OFDM signal. This facilitates the use
of a nonlinear amplifier while offering the benefits of OFDM
(e.g., cyclic prefix) and constant-modulus exploitation.

With respect to the construction of information-carrying,
complementary sequence pairs, prior research focused on de-
termining the number of complementary sequence pairs for a
given length L when the values of the sequence are restricted
to a specific symbol set or finite alphabet [3],[4]. The number
of length L sequences that form complementary pairs is on
the order of logL, meaning the length of the sequence grows
exponentially with the number of information symbols to be
transmitted. In contrast, we develop a recursive technique for
constructing complementary sequence pairs such that the se-
quence length grows linearly with the number of information
symbols encoded. Finally, we extend the constant-modulus

OFDM signal generation to two dimensions, for use in mas-
sive MIMO at mmWave frequencies.

2. SYMBOL ENCODING OF A COMPLEMENTARY
SEQUENCE PAIR FOR OFDM

Consider an ODFM signal equal to a sum of orthogonal
sinewaves.
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The sinewaves are orthogonal according to:
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Consider dividing the sinewaves into even and odd carriers as
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Each even carrier is periodic, repeating at least every T/2
such that the segment in −T2 < t < 0 is equal to the segment
0 < t < T

2 . For the odd-carriers, the segment in −T2 < t < 0

is the negative of the segment in 0 < t < T
2 .

If complex-amplitude sequences c1[n] and c2[n] form a
complementary pair such that their respective autocorrela-
tions sum to a scalar multiple of a Kronecker Delta function

r11[`] + r22[`] = (E1 + E2)δ[`] (5)

where rkk[`] = ck[`] ∗ c∗k[−`] is the autocorrelation sequence
and Ek is the energy for ck[n], k = 1, 2, it easy to show that

|se(t)|2 + |so(t)|2 = constant independent of t (6)

As a result, it follows that the signal below is a constant-
modulus, i.e., constant-amplitude, phase-only signal.

x(t) = se(t)+ je
jφc(t)so(t) = constant modulus signal (7)
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where the phase-correction (spreading) signal is given by

ejφc(t) = ej{6 se(t)−6 so(t)} (8)

To maintain orthogonality between the even carriers and the
phase-corrected odd carriers, we force the phase-correction
in the segment −T2 < t < 0 to be the same as the phase-
correction in the segment 0 < t < T

2 . Relative to eq. (7),
this is equivalent to implementing −j in −T2 < t < 0, while
implementing a +j in 0 < t < T

2 . The net result is to main-
tain mutual orthogonality between the even carriers and the
phase-corrected odd carriers for computational simplicity.

Since the phase of the composite odd carrier signal is lost
in the signal formed above, a single transmission with all nec-
essary information to recover the original sequences is

c̃1[n] = c1[n]+ c2[n−
N

4
] c̃2[n] = c1[n]− c2[n−

N

4
] (9)

where c1[n] and c2[n] are complementary sequences of length
L = N/4 such that c̃1[n] and c̃2[n] are complementary se-
quences of length N/2. c̃1[n] are the complex-amplitudes
for the N/2 even carriers, while c̃2[n] are the complex-
amplitudes for the N/2 odd carriers. This has the added
benefit of achieving additional frequency diversity.

3. COMPLEMENTARY SEQUENCE CODING OF
INFORMATION SYMBOLS

The basic building blocks for forming a complementary se-
quence pair at each iteration from the symbols is described
below, where Ik is the k − th information symbol equal to
a member of a finite alphabet and r is a small, real-valued,
positive constant on the order of 0.1 for a typical FFT length
such as N = 1024 (L = 256).

c
(k+1)
1 [n] = Ikc

(k)
1 [n]− rc(k)2 [n− 1] (10)

c
(k+1)
2 [n] = rc

(k)
1 [n] + I∗kc

(k)
2 [n− 1] (11)

The small value of r limits the magnitudes of the terms
summed in the middle of the sequence, maintaining a reason-
able range of sequence values. We typically commence this
iteration with the simple length-2 complementary sequences

c
(0)
1 [n] = {1, 1} c

(0)
2 [n] = {1,−1} (12)

The reasons that the above iteration yields a new pair of
complementary sequences at each iteration, with the length
growing by 1 at each iteration, are two-fold: (1) a time-shift
does not affect autocorrelation and (2) a 2×2 unitary transfor-
mation applied to a pair of complementary sequences yields
another pair of complementary sequences. The unitary trans-
formation used here is

Sk =
1

r2 + |Ik|2

[
Ik −r
r I∗k

]
(13)
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Fig. 1. Magnitudes of typical pair of complementary se-
quences of length L = 256, r = 0.1

where, again, r is real-valued. Fig. 1 shows the magnitudes of
a typical pair of complementary sequences of lengthL = 256,
using r = 0.1. We use the two respective values of each
sequence at both the beginning, n = 0, and at the end, n =
Nk, to extract the information symbols at each iteration as we
progressively work backwards. Focusing on the endpoints,
we have[

c
(k+1)
1 [0] c

(k+1)
2 [0]

c
(k+1)
1 [Nk] c

(k+1)
2 [Nk]

]
=

[
c
(k)
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0 c
(k)
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]
Sk

This leads to the following primary mechanism for estimating
the k-th symbol at the k-th iteration

Î∗kc
(k+1)
1 [0] + rc

(k+1)
2 [0] = 0 (14)

−rc(k+1)
1 [Nk] + Îkc

(k+1)
2 [Nk] = 0 (15)

Since r is a known value, the value of Îk can be calculated
from both eq. (14) and eq. (15). By encoding information
symbols using eq. (10) and eq. (11), the length of each se-
quence at each iteration, denoted Nk + 1, grows by 1 with
the incorporation of each new information symbol; the two
sequences form a complementary pair at each and every iter-
ation.

From the two received complementary sequences ĉ(L)1 [n]

and ĉ
(L)
2 [n], the symbol estimate Îi,L for i = 1, 2 can be

estimated from eq. (14) and eq. (15), respectively. These
estimates are independent in additive white gaussian noise,
so the arithmetic mean provides the best estimate of the re-
ceived symbol. Choosing the nearest symbol ÎL to the mean
IL,est, we can form the estimated inverse of eq. (13) (conju-
gate transpose, since Sk is Hermitian), allowing us to estimate
the two sequences, ĉ(L−1)1 [n] and ĉ(L−1)2 [n] using

ĉ
(L−1)
1 [n] = Î∗Lĉ

(L)
1 [n] + rĉ

(L)
2 [n] (16)

ĉ
(L−1)
2 [n+ 1] = −rĉ(L)1 [n] + ÎLĉ

(L)
2 [n] (17)

This transformation will always create a complementary se-
quence pair of length L, regardless of the value of ÎL, since
we are using the conjugate transpose of eq. (13). However, if
the symbol estimate is correct, eq. (14) and eq. (15) are satis-
fied, meaning that ĉ(L−1)1 [L] = ĉ

(L−1)
2 [−1] = 0, and the two
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estimated sequences are also a complementary sequence pair
of length L− 1. The process can then be repeated on the two
shortened sequences to get Îk for k = L− 1, ..., 1.

Although, with properly selected r, any symbol alphabet
is possible in this scheme (PSK, QAM, etc.), an m-PSK sym-
bol alphabet, where |Ik| = 1, provides a decoding advan-
tage. A symbol error can then be viewed as a multiplication
by eq. (14), with ejφe , the difference between estimated and
actual symbol, in place of Ik. For sufficiently small r, with
m-PSK symbols, this is approximately a rotation of the entire
sequences ĉ(k)1 [n] and ĉ(k)2 [n] by ±φe (the sequences will re-
main complementary, since this is a unitary transformation).
This phase rotation will rotate symbol estimates Îk−1 and be-
yond by the same phase error. Differential encoding can pro-
tect from this error (to first order) at the cost of one encoded
symbol. Pilot symbols can also be inserted into the series
of information symbols, in order to rotate the sequence back
to the correct phase. This phase rotation also means that al-
though, in principle, Ik,est could have been used instead of Îk
in eq. (16) and eq. (17), a soft decoding rule will propagate
phase differences and increase error rates.

If all symbols are decoded correctly, the end result will
be a scalar multiple of eq. (12). A difference from these se-
quences alerts the receiver to an error in decoding, and can
prompt a request for retransmission.

4. RECOVERING COMPLEMENTARY SEQUENCES
FROM THE TRANSMITTED OFDM SIGNAL

Since the OFDM signal from section 2 is constant modulus,
there are powerful denoising and channel estimation tech-
niques that can be applied, including the constant-modulus
(CM) algorithm [5] or a variant [6],[7]. After processing, the
received sequence c̃1,r[n] can be recovered directly from the
even carriers via standard OFDM demodulation. The even
carrier estimates of the original sequences, ĉ1,e[n] and ĉ2,e[n]
are the first and second halves of c̃1,r[n], respectively.

Given the estimates from the even carriers, the phase-
correction for the odd carriers can be estimated as φc(t) =
6 se,r(t) − 6 ŝo(t), where se,r(t) is the received even carrier
signal, and ŝo(t) is the estimate of the (phase uncorrected)
odd carrier signal using ĉ1,e[n] and ĉ2,e[n] in eq. (9) and
eq. (4). Multiplying the odd carriers by e−jφ̂c(t) and de-
modulating the OFDM signal gives c̃2,r[n]. The odd carrier
estimates c1,o[n] and c2,o[n] are then the first half and the
negative of the second half of c̃2,r[n], respectively. Since
this second estimate is affected by the noise on both the even
and odd carriers, the odd carrier sequence estimate is less
accurate than the even carriers. However, the odd carriers do
contain information that can be used to improve the estimates
of ĉ(L)1 [n] and ĉ(L)2 [n], especially after processing.

Using the information encoding scheme of section 3, the
sequences are complementary at all iterations k = 1, ..., L,
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so at any iteration of the decoding in section 3, the constant-
modulus signal of section 2 can be re-formed, and any CM
exploiting algorithm can be re-run to further reduce noise.

5. ERROR RATES IN AWGN

Figures 2 and 3 show frame and symbol error rates, respec-
tively, vs SNR, generated from Monte Carlo simulations us-
ing AWGN with 10,000 runs at each SNR, using a block
length of 256 8-PSK information symbols. Frame errors were
counted as any symbol in the block being decoded incorrectly.
Since the proposed method sends N/4 information symbols
on N carrier frequencies, error rates are compared to trans-
mitting the same 8-PSK symbols (with no pulse shaping) four
times and averaging the received values. We used 8-PSK vice
a multi-level alphabet to allow for differential encoding.

Other than differentially encoding the symbols, our
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method was used in a bare bones mode with no pilot sym-
bols (see below and section 3), minimal (simple) exploitation
of the constant-modulus property, and the suboptimal (but
simple) symbol-by-symbol decoding scheme represented by
eq. (14) and eq. (15). The symbols are clearly coupled in the
complementary sequences, so some form of joint decoding
is required for optimality. As a simple means of exploit-
ing the CM property of the signal, the received signal was
clipped, essentially retaining only phase information. This
was repeated at each decoding step by synthesizing a sum
of sinewaves from the current complementary pair similar
to that prescribed previously at the full-length, and clipping
to progressively reduce the noise. The odd carrier estimates
were averaged with the even estimates via a weighted average
starting at 0 and geometrically trending to even weighting.

The proposed method outperforms the 8-PSK with 4x
time-diversity when viewed from a block perspective, but
the overall symbol error rate is higher. The latter is due to
the coupling of symbols, as discussed above, such that even
a single error can cause substantial error propagation with
the suboptimal symbol-by-symbol decoding scheme and no
pilot symbols. In the 8-PSK case, an error in decoding one
symbol has no effect on the remaining symbols. Again, this
was a bare bones demodulation scheme for our method. De-
spite that, a frame error was significantly less likely to occur
with our scheme. To combat error propagation, pilot sym-
bols should be included, as discussed in section 3, and joint
decoding should be employed. A Viterbi-like decoder at the
symbol level is currently under development, since eq. (10)
and eq. (11) can be viewed as convolutions:

c
(k+1)
1 [n] = c

(k)
1 [n] ∗ {Ik, 0}+ c

(k)
2 [n] ∗ {0,−r} (18)

c
(k+1)
2 [n] = c

(k)
1 [n] ∗ {r, 0}+ c

(k)
2 [n] ∗ {0, I∗k} (19)

where {a, b} denotes a length-2 sequence. Finally, these re-
sults include minimal exploitation of the constant-modulus
property of the transmitted signal when decoding. Additional
advantages could be obtained with more sophisticated meth-
ods, especially for channels with intersymbol interference.

6. EXTENSION OF CONSTANT MODULUS
TRANSMISSION TO 2 DIMENSIONS

As discussed briefly, the primary motivating application for
this work is for use at mmWave frequencies with massive
MIMO. Assume a uniform linear array of M (equi-spaced by
d) identical antennas at mmWave frequencies. DFT vectors
of length M are used to form co-phasal beams toward spatial
angles equi-spaced in µ-space, where µ = 2π

λ d cos θ with λ
denoting the wavelength and θ equal to the conical (physical)
angle relative to the line of the array. What we propose is that
each encoded sequence value be carried by a 2D sinewave
equal to the outer-product of a length-N DFT vector (cor-
responding to a DT (discrete-time) temporal sinewave) and

a length-M DFT vector corresponding to the DS (discrete-
space) sinewave used as a beamforming vector. Note that the
1D case in section 2 was developed in Continuous-Time to
emphasize that the transmitted OFDM signal is constant mod-
ulus for all time. In contrast, since the array is discrete, the 2D
case is developed using the standard DT model for OFDM.

Assume the 2D complex sequences c1[m,n] and c2[m,n]
form a 2D complementary pair such that their respective 2D
autocorrelations sum to a scalar multiple of a 2D Kronecker
Delta function, i.e.,

r11[`, k] + r22[`, k] = (E1 + E2)δ[`, k] (20)

where rjj [k, `] = cj [k, `] ∗ ∗c∗j [−k,−`] is the 2D autocorre-
lation sequence and Ej is the energy for cj [m,n], j = 1, 2.

Let Cj denote theN×M matrix representation of the 2D
sequence cj [n,m], j = 1, 2. WN denotes the N ×N Inverse
DFT matrix. W

(E)
N is formed from every other column of

WN starting with the first column, corresponding to the even
carriers; W

(O)
N is formed from every other column of WN

starting with the second column, corresponding to the odd
carriers. With WM ,W(E)

M , and W
(O)
M defined similarly, the

(n,m) element of the N ×M matrix X below dictates the
value transmitted by the m-th antenna at DT time n:

X1 = W
(E)
N C1W

(E)H
M + W

(E)
N C2W

(O)H
M (21)

X2 = W
(O)
N C2W

(O)H
M −W

(O)
N C1W

(E)H
M (22)

X = X1 + jej
6 Φc �X2 Φc = X1 �X∗2 (23)

where � denotes the point-wise product and the exponentia-
tion is point-wise. Each product WNCWH

M is equivalent to a
double-sum (over the elements of C) of 2D sinewaves equal
to the outer products of the columns of WN with the rows
of WH

M . Similar to the 1D case, the top and bottom halves
of the phase-correction matrix are equal. Constructed with
eq. (23), X has constant magnitude in both time and space
despite transmitting on multiple beams simultaneously!

The encoded 2D complementary sequences can be esti-
mated from X according to

C1 = W
(E)H
N XW

(E)
M C2 = W

(E)H
N XW

(O)
M (24)

This estimate effectively uses theN/2 even temporal carriers,
as in the 1D case. The odd carrier estimates can be obtained
after estimating Φc like in section 4.

Future work includes encoding information onto 2D com-
plementary sequence pairs and the development of a joint
(Viterbi-like) decoding scheme as mentioned in section 5. A
simple method to create a 2D complementary sequence pair
would be to construct sequences of the appropriate lengthsM
and N using section 3, and then take the outer products ac-
cording to the methods outlined in [8]. With further research,
the methods outlined in this paper provide advantages both on
transmit (nonlinear amplifiers) and receive (CM signal pro-
cessing) in both the 1D (generic OFDM) case and especially
the 2D (mmWave, massive MIMO) case.
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