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Abstract—This paper considers a scenario in which an access
point (AP) is equipped with a mobile edge server (MEC) of
finite computing power, and serves multiple resource-hungry
mobile users by charging users a price. This price helps to
regulate users’ behavior in offloading computation jobs to the
AP. To that end, first we introduce an economics model for
MEC bearing physical layer offloading intuition. We then propose
a learning based pricing mechanism, in which with no direct
control and no knowledge of users’ private information, the AP
learns the optimal price. Under our mechanism, the AP induces
self-interested users to make socially optimal offloading decisions,
thus maximizing the system-wide welfare.

Index Terms—Mobile edge computing, multi-user offloading,
game theory, wireless network economics

I. INTRODUCTION

With the development of internet services, a diverse variety
of computing-intensive applications such as mobile shopping,
face recognition, and augmented reality are emerging. These
jobs typically require low latency and high power consump-
tion, and thus are offloaded to the cloud via access points
(e.g., base station) associated with mobile users. However, as
the cloud is often located far away from users, they suffer
from wide area network (WAN) delay [1]. As such, a trend of
moving the function of cloud computing to the network edge
is occurring. In cellular networks, the network edge refers
to the access point (AP), which is in control of both the
computing and the radio resource. Thus, a joint optimization of
those resources can be performed, bringing about considerable
improvement in the computing/radio resource efficiency.

Presently, researchers have been actively studying the joint
optimization of the computing resource and the radio resource
for different mobile edge computing (MEC) scenarios, such as
the single user case [2]–[5], the multi-user case [6]–[9], the
multiple APs case [10], the D2D case where mobile users
share the resources among each other [11], and the complex
scenario where energy harvesting is integrated [12], [13]. The
above studies all formulate a centralized resource allocation
problem, which involves solving a Mixed Integer Nonlinear
Programming (MINP) problem. Centralized optimization re-
quires direct control of users’ offloading decisions and requires
knowledge of users’ profit functions of offloading, which are
affected by attributes like users’ battery states and distances to
the AP. Generally, users are not willing to share their private
information. Besides, users are selfish and may not report their
true utility functions.

This paper aims to do resource allocation in a decentral-
ized way. Along this line of research, in [14] the original
centralized MINP problem is decomposed into several sub-
problems and solved semi-distributively. The works [15]–[19]
reformulate the original problem into a game and arrive at a
Nash Equilibrium of the interactive decision process among
users. This equilibrium suffers from net offloading welfare
loss, as selfish users do not take into consideration the negative
externality of congestion they cause to others in their decision
making. In light of this, we propose using pricing to regulate
users’ behavior, via charging users a fee for the congestion
they cause. Our goal is to find a price that induces users
to choose the socially optimal levels of demand, so as to
maximize the net offloading welfare. Noting that existing
economic works such as [20], [21] cannot be applied here since
they use abstract utility functions (e.g., a simple logarithmic
function), we first introduce an economics model for MEC
of physical layer meanings, thus bridging the gap between
economics and physical layer parameter optimizations. Based
on the proposed economics model, we propose a learning-
based pricing mechanism, wherein the AP iteratively updates
and broadcasts prices and edge delays based on the congestion
level it observes. This mechanism is privacy preserving since
the AP does not need knowledge of individual utility functions.
Via the proposed mechanism the AP will learn the socially
optimal price, and the equilibrium point of this mechanism is
the socially efficient point.

II. SYSTEM MODEL

We consider an MEC system consisting of an access point
(AP) and N mobile users. The wireless AP could be a
base station, or a Wi-Fi access point. Other than being a
conventional access point to the core network, it is installed
with an additional edge computing server. The mobile devices
might be running computation-intensive and delay-sensitive
jobs, and may have insufficient computing power or limited
battery energy to complete those jobs. As such, they may
offload part/all of their jobs to the AP. In this section, we will
introduce the offloading policy, the wireless channel model,
followed by the models for computing in detail (see Fig. 1).

A. The job generation model and the offloading policy

Jobs arrive at the mobile users following a Poisson process
of rate λa. The service time of a job is identically distributed
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Fig. 1: An illustration of job arrival/offloading/computation.

(i.i.d.) and exponentially distributed, with an average of µa

CPU cycles to run and laµa nats of input data to offload.
This paper considers the scenario with flat-fading channels,

and assume that the user can finish offloading in a channel
block. Hence, we consider the following offloading policy.
When a job arrives, if the achievable rate is higher than a
threshold βk, the mobile user would offload its job to the AP;
otherwise, the mobile user will choose local computing.

B. The radio access model

Users access the AP in a FDMA mode, suffering no multi-
user interference. Let hk denote the small-scale channel gain
from user k to the AP. The achievable uplink data rate is,

Rk = log(1 + d−α
k |hk|2Pt/σ

2), k = 1, 2, · · · , N, (1)

where dk denotes user k’s distance to the AP and α represents
the path loss exponent. Pt is the transmission power and
σ2 denotes the received noise power at the AP. In addition,
comparing the achievable data rate Rk with the expected data
rate βk and by Shannon theorem [22]: when Rk > βk the
mobile device can transmit its job to the AP successfully.
Hence, the user k’s offloading frequency (probability) is

xk = Pr(|hk|2 > (eβk − 1)ρ−1
k ), k = 1, 2, · · · , N, (2)

where ρk , d−α
k Pt/σ

2. A mobile user could control its
offloading frequency by adjusting the threshold βk.

C. Computation model

Based on the above radio access model and offloading
policy, we discuss the total overhead/cost of local computing
and edge computing. Both the processing delay and buffer
delay are taken into consideration.

1) Local computing: By the Poisson arrival process and
exponential job service time assumptions, we have an M/M/1
queue for local computing. Let fm be the mobile device’s
computing capability (CPU cycles per second), then the ex-
pected time spent per job (including both the job execution
time and the time awaiting in a local buffer) is

DLC
k (xk) = 1/(µm − λax̄k), k = 1, 2, · · · , N. (3)

where the local computing probability x̄k , 1 − xk, and the
service rate µm , fm/µa. Next, the computational energy of
local computing is

ELC
k = κmf2

mµa, k = 1, 2, · · · , N, (4)

where κmf2
m is the power consumption the mobile device

user runs one CPU cycle, and κm is an energy consumption
coefficient that depends on the chip architecture [23].

The total weighted cost of local computing is

ZLC
k (xk) = cekE

LC
k + ctkD

LC
k (xk), k = 1, 2, · · · , N, (5)

where 0 < cek < 1 (in units 1/Joule) and 0 < ctk < 1 (in units
1/Second) are the weights of computational energy and delay.
The weights allow different users to place different emphasis
in decision making. For example, if the mobile device is at
a low battery state, it would give energy consumption more
emphasis, choosing a bigger value of cek. If the user is running
urgent jobs, it would give the delay cost more emphasis. Due
to limitations of space, this paper studies the symmetric case
where ctk = ct0, cek = ce0, ∀k.

2) Edge computing: First, time taken to offload to AP is

DEC
k,1(xk) = laµa/βk(xk), k = 1, 2, · · · , N. (6)

This indicates that the energy required by offloading is

EEC
k (xk) = Ptlaµa/βk(xk), k = 1, 2, · · · , N. (7)

Subsequently, the offloaded job will stay at the AP’s buffer
until it leaves after execution. By the splitting and superposi-
tion properities from queueing theory [24], the job arrival at
the AP is another Poisson process with arrival rate as the sum
arrival rate of

∑N
k=1 λaxk. Hence, we get an M/M/1 queue

for edge computing. Let fB be the AP’s computing capability
(CPU cycles per second), then the expected time awaiting at
the AP equals

DEC
2 (x) = 1/(µB −

∑N

k=1
λaxk), ∀k, (8)

where the service rate µB , fB/µa, and x , (x1, · · · , xN ).
We neglect the energy overhead of edge computing as [12],

[16], [18], since normally the AP can access to wired charing
and it has no lack-of-energy issues. Combining (6) to (8) yields
the total weighted cost of edge computing by user k, i.e.,

ZEC
k (x) = cekE

EC
k (xk) + ctk(D

EC
k,1(xk) +DEC

2 (x)). (9)

III. PROPOSED ECONOMICS MODEL FOR MOBILE EDGE
COMPUTING AND PROBLEM FORMULATIONS

By the aforementioned offloading policy, when a job arrives
the mobile user will offload with probability xk, and locally
compute with probability x̄k. Hence, the expected total cost is

Zk(x) = x̄kZ
LC
k (xk) + xkZ

EC
k (x). (10)

On the other hand, when there is no such edge server
providing computing power, users have to run jobs locally with
average cost ZLC

k (0). Therefore the gross profit of offloading
by the k-th user under a given offloading strategy x is,

Vk(x) = ZLC
k (0)− Zk(x), k = 1, · · · , N. (11)

The key idea of the economics model is to introduce the
utility function and the cost function. Some observations are
in order. Firstly, the profit each user obtains equals the cost
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savings from offloading, and it is a linear combination of the
energy costs and the delay costs. Secondly, the coupled delay
cost DEC

2 (x) reflects the harm/congestion each user causes to
the other users. Thirdly, aside from DEC

2 (x), which depends
on all users’ offloading decisions, the other items in the profit
function only depend on each user’s own offloading frequency
xk. Motivated by these observations, we introduce a utility
function Uk(xk) which includes the items in the profit function
that only depend on the local variable xk, i.e.,

Uk(xk) =ZLC
k (0)− x̄kZ

LC
k (xk)

− xk(c
e
kE

EC
k (xk) + ctkD

EC
k,1(xk)). (12)

This, combined with (11), indicates that

Vk(x) = Uk(xk)− C(x), k = 1, · · · , N. (13)

where C(x) , ctkxkD
EC
2 (x) denotes the delay cost due to the

sharing of an MEC server at the AP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Offloading Frequency

U
ti
li
ty

( , ( ))
k k k

x U x

10m

50m

70m

k

k

k

d

d

d

=
=
=

Fig. 2: The achievavble utility for varying distances to AP.

The utility function in (12) measures the welfare of offload-
ing, while containing physical layer meaning. It is illustrated
in Fig. 2, for a system with parameters set as in the numer-
ical results section. One can see that the utility function is
strictly increasing while the rate of increase, i.e., the demand,
decreases as xk increases; this is consistent with the law
of diminishing marginal returns, a property of typical utility
functions in economics. Moreover, the user closer to the AP
has more offloading demand and can achieve a higher utility
for the same offloading amount. This agrees with intuition that
a user nearer the AP experiences a better wireless channel.

A. Problem formulations

We first consider the social-welfare offloading decision
problem. Assume that the AP acts as a social planner. It would
like users to choose their offloading frequency such that the
net social welfare

∑N
k=1 Vk(x) is maximized as follows.

Problem 1 (Social Problem):

x̄⋆
k ,argmax

xk

∑N

k=1
Vk(x)

s.t. 0 ≤ xk ≤ 1. (14)

Intuitively, in Problem 1 each user should also be concerned
with the congestion it causes to other users and should keep
its offloading under an appropriate amount for other users’
welfare; the difficulty lies in how to incentivise users to do

so when users are selfish and will choose their offloading
decisions such that its individual profit Vk(xk) is maximized.

Pricing is a useful tool in incentivising users to choose the
socially optimal levels of demand. The key idea is to enforce
users to pay for the congestion it causes to the other users. In
the following Problem 2, we study the pricing-based scheme,
which charges users an additional edge computing service fee
to regulate users’ behavior.

Problem 2 (Regulated Selfish Problem):

x⋆
k ,argmax

xk

Uk(xk)− (P + ct0D
EC)xk

s.t. 0 ≤ xk ≤ 1, (15)

where P denotes the unit price for offloading.
Does there exist price P such that the individual objectives

of self-interested users will be aligned with the social welfare
objective? If it exists, how to design simple pricing schemes
to achieve the best net welfare? In the following section, we
answer the above two questions.

IV. LEARNING-BASED PRICING TO INDUCE SOCIALLY
OPTIMAL OFFLOADING

In what follows, we first analyze the structural property of
the formulated social and regulated selfish problems, and admit
in closed form the optimal price.

A. Optimal price for offloading under complete information

For the Social Problem, by the first order condition, at the
maximum is holds that

∂Uk(xk)/∂xk −
∑N

j=1
∂ct0xjD

EC
2 (x)/∂xk = 0

⇔gk(xk) = ct0D
EC
2 +

ct0
∑N

j=1 λaxj

(µB −
∑N

j=1 λaxj)2
, ∀k. (16)

where gk(xk) , ∂Uk(xk)/∂xk is the demand function.
By contrast, for the Regulated Selfish Problem, at the

maximum it holds that

gk(xk) = ct0D
EC
2 + P, ∀k. (17)

which, combined with (16), yields

P = ct0
∑N

j=1
λaxj/(µB −

∑N

j=1
λaxj)

2, (18)

which is also known as the congestion level.
Solving the equations in (16) and substituting the optimal

offloading decisions, denoted by x̄⋆
k, k = 1, · · · , N , into (18),

we arrive at the optimal price P ⋆ that induces self-interested
users to make socially optimal offloading decisions.

B. Learning-based pricing inducing social-optimal offloading

That derivation of the optimal price P ⋆ requires solving
for x̄⋆

k based on users’ report of their individual utility func-
tions, which include some private information such as their
locations and battery states. Generally, users are not willing
to share their private information. To that end, we propose
an evolutional pricing algorithm, which requires no individual
utility functions and learns the correct price.
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As shown in Fig. 3, at each time slot t, the AP observes
P t−1
true , the congestion level caused by users’ offloading deci-

sions. Based on the congestion level, the AP computes and
broadcasts the unit service fee P t and delay Dt

EC signals to
users. Noting that by comparing (8) and (18), for given P t we
have a corresponding Dt

EC as follows

Dt
EC = 1/(2µB) +

√
P t/(ct0µB) + 1/4µ2

B . (19)

Viewing the signals, users decide their offloading frequency
xt
k based on (17) to maximize their individual welfare. The

AP will observe this new congestion level P t
true. The above

process iterates until convergence when the resulting conges-
tion level equals the price set, meaning that we have learnt the
optimal price and arrived at the socially optimal equilibrium.

Stage 1: AP adjusts price/delay pair of 
EC

( ; )
t t

P D

Stage 2: Each user decides its offloading frequency 

AP broadcasts 

the expected 

price/delay

The congestion 

observed by AP

Fig. 3: Schematic view of the learning-based pricing scheme.

By definition, it can be verified that g(xk) is a monoton-
ically deceasing function with respect to xk. Besides, both
the average edge delay and the congestion level increase as
more jobs are offloaded to the AP. As such, if P t < P ⋆, the
resulting xt

k > x⋆
k, which results in a higher congestion level

than P t. Therefore, by contradiction P t > P t
true indicates

that P t > P ⋆. As such, the AP shall decrease the price if
P t > P t

true. Otherwise, the AP shall increase the price. Please
refer to Algorithm 1 for more details on the learning process.

Algorithm 1 Learning-based pricing algorithm
1: Initialize: t← 0, P t ← rand, Dt

EC ← by (19), PLB ← 0
2: xt

k ← g−1
k (ct0D

t
EC + P t), k = 1, 2, · · · , N ◃ by (17)

3: P t
true ← by (18)

4: while P t < P t
true do ◃ Learn lower/upper bounds

5: PLB ← P t, t← t+ 1, P t ← 2PLB, Dt
EC ← by (19)

6: xt
k ← g−1

k (ct0D
t
EC + P t), k = 1, 2, · · · , N

7: P t
true ← by (18)

8: end
9: PUB ← P t

10: while PUB − PLB > ϵ do ◃ Bisection search
11: t← t+ 1, P t ← (PLB + PUB)/2, Dt

EC ← by (19)
12: xt

k ← g−1
k (ct0D

t
EC + P t), k = 1, 2, · · · , N

13: P t
true ← by (18)

14: if P t < P t
true then

15: PLB ← P t

16: else
17: PUB ← P t

18: end
19: end ◃ The stop threshold ϵ = 0.01
20: return P ← P t and DEC ← Dt

EC
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Fig. 4: (a) Convergence v.s. time; (b) Profit per user per job;
(c) Offloading frequency v.s. each user’s distance to the AP.

V. NUMERICAL RESULTS

We conduct simulations to validate Algorithm 1. Mobile
users are uniformly placed at random on a ring of radius 10 ≤
d ≤ 75 (unit: meters) and center located at AP. The AP and
the mobile devices are with computing power of fB = 3GHz
and fm = 0.1GHz, respectively. Jobs arrive at users at a rate
of λa = 0.6, with each job requiring an average of µa =
100M CPU-cycles to run and laµa = 100 nats to offload.
The channels are assumed to be identically distributed (i.i.d.)
and |hk|2 ∼ exp(1). The path loss exponent α = 3.5. The
transmit power is P = 100mW and the noise power level is
σ2 = −40dBm. The weights ct0 = 0.9 and ce0 = 0.1.

In Fig. 4(a) we plot the convergence of the proposed
learning-based pricing scheme. It can be seen that this iterative
process converges after a few iterations, and learns the optimal
price. In Fig. 4(b) we further plot the profit each user obtains
at the equilibrium. It can be seen that by the proposed pricing-
based scheme the AP induces users to achieve the social-
optimal profit. In Fig. 4(c) we plot the offloading frequency
versus distances to the AP. As expected, the user closer to the
AP offloads more frequently.

VI. CONCLUSION

In this paper, we have proposed an incentive-aware offload-
ing control mechanism for an MEC system, which consists
of an access point (AP) of finite computing power, and serves
multiple resource-hungry mobile users. We have introduced an
economics model for MEC, based on which we then proposed
a learning based pricing mechanism. With our mechanism, the
AP learns the socially optimal price, without direct control and
without knowledge of users’ private information. This optimal
price helps to align the individual objectives of selfish users
with the system’s social welfare objective in offloading.

4787



REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, 2009.

[2] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[3] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1757–1771, May 2016.

[4] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
ISIT, Barcelona, Spain, 2016, pp. 1451–1455.

[5] Y. Tao, C. You, P. Zhang, and K. Huang, “Stochastic control of
computation offloading to a dynamic helper,” in ICC Workshops, Kansas
City, MO, USA, May 2018.

[6] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay
tradeoff in multi-user mobile-edge computing systems,” in GLOBECOM,
Washington, DC, USA, 2016, pp. 1–6.

[7] ——, “Stochastic joint radio and computational resource management
for multi-user mobile-edge computing systems,” IEEE Trans. Wireless
Commun., vol. 16, no. 9, pp. 5994–6009, 2017.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[9] M.-H. Chen, B. Liang, and D. Ming, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in INFOCOM, Atlanta, GA, USA, 2017, pp.
1863–1871.

[10] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Adaptive computation
scaling and task offloading in mobile edge computing,” in WCNC, San
Francisco, CA, USA, 2017, pp. 1–6.

[11] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D
collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3887–
3901, 2016.

[12] F. Wang and X. Zhang, “Dynamic interface-selection and resource
allocation over heterogeneous mobile edge-computing wireless networks
with energy harvesting,” in INFOCOM WKSHPS, Honolulu, HI, USA,
2018, pp. 190–195.

[13] F. Guo, L. Ma, H. Zhang, H. Ji, and X. Li, “Joint load management and
resource allocation in the energy harvesting powered small cell networks
with mobile edge computing,” in INFOCOM WKSHPS, Honolulu, HI,
USA, 2018, pp. 754–759.

[14] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Trans. Veh.
Technol., vol. 66, no. 4, pp. 3435–3447, 2017.

[15] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, 2015.

[16] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[17] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in
INFOCOM, San Francisco, CA, USA, 2016, pp. 1–9.

[18] J. Zheng, Y. Cai, Y. Wu, and X. S. Shen, “Dynamic computation
offloading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Trans. Mobile Comput., vol. 99, no. 99, pp. 1–1, 2018.

[19] L. Tang and X. Chen, “An efficient social-aware computation offloading
algorithm in cloudlet system,” in GLOBECOM, Washington, DC, USA,
2016, pp. 1–6.

[20] W. Fang, X. Yao, X. Zhao, J. Yin, and N. Xiong, “A stochastic control
approach to maximize profit on service provisioning for mobile cloudlet
platforms,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 4, pp.
522–534, 2018.

[21] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mecha-
nisms toward efficient resource sharing for cloudlets in mobile cloud
computing,” IEEE Trans. Services Comput., vol. 9, no. 6, pp. 895–909,
2016.

[22] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[23] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in HotCloud’10 Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, Boston, MA, USA, 2010,
pp. 1–7.

[24] R. Hassin and M. Haviv, To Queue Or Not to Queue: Equilibrium
Behavior in Queueing Systems. Kluwer Academic Publishers, 2003.

4788


		2019-03-18T11:09:06-0500
	Preflight Ticket Signature




