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ABSTRACT

Multi-Access Edge Computing (MEC) is one of the key technology
enablers of the 5G ecosystem, in combination with the high speed ac-
cess provided by mmWave communications. In this paper, among all
services enabled by MEC, we focus on computation offloading, de-
vising an algorithm to optimize computation and communication re-
sources jointly with the assignment of mobile users to Access Points
and Mobile Edge Hosts, in a dynamic scenario where computation
tasks are continuously generated according to (unknown) random
arrival processes at each user. To formulate and solve the dynamic
allocation/assignment problem, we merge tools from stochastic op-
timization and matching theory, thus developing a low complexity
algorithmic solution that works in an online fashion. Numerical re-
sults illustrate the potential advantages of the proposed approach.

Index Terms— Multi-access edge computing, computation of-
floading, matching theory, stochastic optimization.

1. INTRODUCTION

Nowadays, we are in the middle of the so-called fourth industrial
revolution, a drastic change of paradigm in which technology plays
a key role, being at the center of this transformation. Some of the key
points of this change are Internet of Things (IoT), automated vehi-
cles, remote surgery, etc. The management of such complex system,
with billions of interconnected devices, requires a new rethinking of
the network, and finds its first solution in the fifth generation of mo-
bile systems (5G), which is now in its second phase [1]. Differently
from the previous evolution of mobile communication systems, the
aim of 5G is to go beyond the simple enhancement of the physi-
cal layer, thus enabling new services from different application do-
mains as, e.g., those aforementioned. To enable services with such
diverse requirements, the new network has to be designed with high
flexibility, in such a way that resources can be allocated when and
where needed. This is possible thanks to network function virtu-
alization and network slicing [2]. Moreover, to enable low latency
services, Multi-Access Edge Computing is seen as a promising tech-
nology [3], thanks to the deployment of computation and storage
resources at the edge of the network, in edge servers called Mobile
Edge Hosts (MEH) using the ETSI terminology. The combination of
MEC and mmWave communications is the main idea of the H2020
EU/JP project 5G-Miedge [4]. Among all possible services enabled
by MEC, in this paper we focus on computation offloading, through
which computationally heavy applications can be transferred from
mobile terminals to a MEH, in order to reduce power consumption
and/or to enable resource-contrained devices (e.g. sensors) to run
sophisticated applications within strict latency constraints.

This work was funded by the H2020 EU-Japan Project 5G-MiEdge nr.
723171 and by Sapienza University.

Related works. The problem of resource allocation for computa-
tion offloading with MEC has received a lot of attention in the re-
search community in the last few years [5–13]. In [5], the concept of
joint optimization of radio and computation resources is presented
and shown to be the best solution in terms of energy consumption.
In [6], [8], computation offloading is investigated in a mmWave sce-
nario, considering the effect of blocking events on the data rate and
power consumption. A comprehensive survey on computation of-
floading with MEC can be found in [14]. Recently, computation
offloading was also extended to a dynamic case [10–12], which is
useful for those applications in which new tasks arrive at each time
slot, according to a certain random process. In particular, in [10] the
problem is formulated as the minimization of the long-term average
power consumption under the constraint of mean-rate stability of the
computation queues, in a single MEH scenario, i.e., without consid-
ering the assignment problem. In [11], the authors address the prob-
lem of mutual user association in a fog-enabled D2D network, with
the aim of minimizing the long-term average energy consumption
under computation queue stability constraints. In [12], a user assign-
ment problem is cast as an energy-constrained delay minimization in
a multiple AP’s and MEH’s scenario, but not considering allocation
of computation/communication resources.
Contributions. In this paper, we focus on a dynamic computation
offloading problem, considering continuously demanding applica-
tions, and performing the optimization in a per-slot fashion. In par-
ticular, differently from [10–12], we consider a scenario with mul-
tiple AP’s and MEH’s, addressing jointly the problem of user as-
signment and allocation of radio/computation resources. We intro-
duce a novel algorithmic framework that hinges on stochastic op-
timization [10] to deal with the dynamic nature of offloading re-
quests, channel states, computation queues, etc. User mobility is also
taken into account in the problem by reducing frequent handovers
through a suitable penalty function. In principle, the method would
require the solution of a mixed integer nonlinear program (MINLP)
per time slot. To find simple solutions amenable for online imple-
mentation, the user assignment is handled using tools from match-
ing theory [15]. Once the assignment is chosen at each time slot, the
optimal allocation of computation/communication resources is then
given in closed form. The proposed method is able to efficiently han-
dle users’ mobility, and naturally implements a balance of communi-
cation/computation load among the multiple AP’s/MEH’s. Finally,
numerical results illustrate the advantages of the proposed strategy
for dynamic computation offloading with MEC.

2. PROBLEM FORMULATION

Let us consider a scenario with K UE’s and N AP’s, each one asso-
ciated with its corresponding MEH. Each UE is allowed to access a
single AP and can offload some computation tasks to its associated
MEH. Time is divided in slots of equal duration τ . Then, at time
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slot t, the association of user k to the pair AP-MEH n is described
by the binary variable akn(t). In particular, denoting by Sn(t) the
set of users assigned to AP n during time slot t (also called coalition
later on), we have akn(t) = 1 if k ∈ Sn(t), whereas akn(t) = 0
otherwise. Considering the radio access part, hkn(t) is the (ran-
dom) channel coefficient between UE k and AP n, pk(t) denotes the
transmit power for uplink transmission, and βkn(t) represents the
fraction of bandwidth allocated to user k during time slot t. Then,
the maximum transmission rate during time slot t is given by:

Rkn(t) = βkn(t)B log2

(
1 +

hkn(t)pk(t)

βkn(t)N0B

)
, (1)

where N0 is the noise power spectral density, and B is the avail-
able bandwidth. Concerning the computation part, let us denote with
f lk(t) the local CPU cycle frequency at UE k. The dynamic amount
of bits associated with computation tasks of UE k evolves according
to the following queue backlog rule:

Qlk(t+ 1) = max

(
Qlk(t)− τf lk(t)Jk

− τ
N∑
n=1

akn(t)Rkn(t), 0

)
+Ak(t), (2)

where Qlk(t) is the local queue backlog at time t; Ak(t) is the ran-
dom arrival process of bits associated with computation tasks; Jk
represents the number of bits processed within one CPU cycle (a
parameter that depends on the specific application); thus, the term
τf lk(t)Jk denotes the amount of bits processed locally at user k dur-
ing the time slot; finally, the term τ

∑N
n=1 akn(t)Rkn(t) represents

the overall number of bits transmitted by UE k to the assigned AP
n (i.e., the one such that akn(t) = 1) to enable computation of-
floading. We assume that computation tasks can be arbitrarily split
between local and remote processing. Note that our approach sub-
sumes also the cases where applications are entirely run either lo-
cally or remotely. Since part of the bits in the local queue Qlk(t) are
transferred for computation offloading [cf. (2)], the assigned MEH
maintains a remote queue backlog, say, Qrk(t), which quantifies the
number of bits associated with offloaded computation tasks of UE
k. Letting fkn(t) be the CPU cycle frequency allocated to UE k by
MEH n, the remote queue Qrk(t) evolves as:

Qrk(t+ 1) = max

(
Qrk(t)− τ

N∑
n=1

akn(t)fkn(t)Jk, 0

)
(3)

+ min

(
max

(
Qlk(t)− f lk(t)Jkτ, 0

)
, τ

N∑
n=1

akn(t)Rkn(t)

)

where the term τ
∑N
n=1 akn(t)fkn(t)Jk quantifies the number of

bits of UE k processed by the assigned MEH n during the time slot;
the second term in the RHS of (3) represents the arrival rate.

In this paper, our aim is to find the joint assignment strategy
and dynamic allocation of computation/communication resources in
order to minimize the long-term average power consumption of all
UE’s under queue stability constraints. The power consumption of
UE k is given by the sum of the transmit power pkn(t) and the power
spent for local computation plk(t) = γkf

l
k(t)3, where γk is the ef-

fective switched capacitance of the CPU [16]. Then, we can define
the total power consumption of UE k as:

ptotk (t) = pk(t) + γkf
l
k(t)3. (4)

Thus, the dynamic joint assignment/allocation problem can be for-
mulated mathematically as follows:

min
Ψ(t)

lim
t→∞

1

t

N∑
n=1

t−1∑
τ=0

K∑
k=1

E
{
ptotk (τ) + σ · ãkn(τ ; τ − 1)

}
s.t (a) lim

T→∞

E
[
Qlk(T )

]
T

= 0, ∀k;

lim
T→∞

E[Qrk(T )]

T
= 0, ∀k;

(b) 0 ≤ pk(t) ≤ Pk, ∀k, t;
(c) 0 ≤ βkn(t) ≤ 1, ∀k, n, t;

(d)

K∑
k=1

akn(t)βkn(t) ≤ 1, ∀n, t;

(e) akn(t) ∈ {0, 1}, ∀k, n, t;

(f)

N∑
n=1

akn(t) = 1, ∀k, t;

(g) 0 ≤ fkn(t) ≤ Fn, ∀k, n, t;

(h)

K∑
k=1

akn(t)fkn(t) ≤ Fn, ∀n, t;

(i) 0 ≤ f lk(t) ≤ F lk, ∀k, t;

(5)

where Ψ(t) =
[
{pk(t)}k, {fkn(t)}k,n, {f lk(t)}k, {akn(t)}k,n,

{βkn(t)}k,n
]
; Pk and F lk are the maximum power budget and

the maximum local CPU cycle frequency of user k, respectively;
whereas Fn is the maximum CPU cycle frequency of MEH n. The
quantity ãkn(t; t− 1) in (5) is a penalty function defined as:

ãkn(t; t− 1) = (akn(t)− akn(t− 1))2, (6)

whose aim is to reduce the number of handovers in the dynamic pro-
cess, and σ > 0 is a penalty parameter. Indeed, note that choosing
the association in each time slot can result in frequent changes of the
assignment variables, i.e., handovers between pairs AP-MEH. This
not only increases the complexity due to the necessary control sig-
naling for AP switch, but it can also incur in an additional delay on
the execution of the application due to the necessity of transferring
the state of the application from the old MEH to the new one.

The constraints in (5) have the following meaning: (a) The com-
putation queues are mean rate stable; (b) The transmission power is
non negative and does not exceed the power budget of the device;
(c) Each user is given a portion of the bandwidth; (d) The sum of
the bandwidth portions given to all users does not exceed the unity;
it is also assumed that different AP’s operate in different frequency
bands to avoid interference; (e) The assignment variables are binary;
(f) Each user is associated to only one pair AP-MEH; (g) The CPU
cycle frequency allocated by each MEH to users is non negative and
does not exceed its maximum value; (h) The total number of CPU
cycles assigned by the MEH does not exceed a maximum value; fi-
nally, (i) ensures that the local CPU cycles frequency is non negative
and does not exceed its maximum value. Note that, by Little’s law,
the average queue length [cf. constraint (a) in (5)] and the average
queueing delay are strictly linked through the arrival rate [17]. Thus,
the solution of problem (5) aims at striking an optimal tradeoff be-
tween power consumption and average delay for processing tasks
via computation offloading. In the next section, we will introduce
a low-complexity online algorithm to solve (5), merging tools from
stochastic optimization and matching theory with transfers.
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3. ALGORITHM DEVELOPMENT

To solve the dynamic problem (5), we build on stochastic optimiza-
tion as in [18]. Thus, given a system with K users, whose queue
backlogs evolve as in (2)-(3), we define a Lyapunov function as:

L(Θ(t)) =
1

2

K∑
k=1

[
Qlk(t)2 +Qrk(t)2

]
(7)

where Θ(t) =
[
{Qlk(t)}k, {Qrk(t)}k

]
. We can now define the one-

slot conditional Lyapunov drift as:

∆(Θ(t)) , E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (8)

where the expectation depends on the control policy, and is taken
with respect to the random channels and arrival rates. Minimizing
(8) would stabilize the queues, but it can lead to an unnecessarily
large power expenditure and number of handovers. For this reason,
we introduce the so called drift-plus-penalty function as [18]:

∆p(Θ(t)) = ∆(Θ(t))

+ V · E

{
N∑
n=1

K∑
k=1

(
ptotk (t) + σ · ãkn(t; t− 1)

)∣∣Θ(t)

}
(9)

where V is a control parameter used to trade-off power consumption
and number of handovers with queues length. Following arguments
as in [18], we first derive an upperbound of the drift-plus-penalty
function in (9), and then we proceed by greedily minimize instanta-
neous values of such upper bound, thus obtaining the control policy
dictated by the following dynamic optimization:

min
Ψ(t)

V ·
N∑
n=1

K∑
k=1

(
ptotk (t) + σ · ãkn(t; t− 1)

)

−τ ·
K∑
k=1

Qlk(t)

[
f lk(t)Jk +

N∑
n=1

akn(t)Rkn(t)

]
−τ ·

K∑
k=1

Qrk(t)

N∑
n=1

akn(t) (fkn(t)Jk −Rkn(t))

subject to Ψ(t) ∈ Z

(10)

where Z is the feasible set of control actions for problem (5), ac-
cording to constraints (b) − (i). The optimization in (10) requires
the solution of a mixed integer nonlinear program (MINLP) at each
time slot, whose optimal solution might be too complex to be com-
puted even for a moderate number of UE’s and AP’s, especially in
the dynamic context considered in this paper. As a consequence,
to find a low-complexity solution that is amenable for online imple-
mentation, we propose a procedure that splits the solution of (10) in
two parts. As we illustrate in the sequel, first the assignment prob-
lem is solved using tools from matching theory with transfers [15];
then, for a given assignment of UE’s to AP-MEH pairs, the optimal
resource allocation is provided in closed form. To build the utility
functions used by the matching algorithm, it is useful to specify the
resource allocation for a given assignment, as shown in the sequel.

3.1. Optimal Allocation of Radio and Computation Resources

Let us assume for the moment that the assignment of UE’s to AP-
MEH pairs has been selected for time slot t, i.e., all the coalitions
Sn(t) have been chosen (cf. Sec. 3.2). The first task at each UE is

the optimal allocation of the local CPU cycle frequencies. In partic-
ular, solving (10) with respect to {f lk(t)}k, it is easy to obtain:

f lk(t) = min

F lk ,
√
Qlk(t)Jkτ

3γkV

 , for all k. (11)

The second subtask is the optimal bandwidth and power allocation
for each UE/AP wireless link. Let us denote by S̃n(t) the set of
users assigned to the pair AP-MEH n at time t, such that Qlk(t) >
Qrk(t), ∀k ∈ Sn(t). To find a simple closed form solution useful in
online implementations, we assume the bandwidth is equally shared
by the users belonging to S̃n(t), i.e. βkn(t) = |S̃n(t)|−1, if k ∈
S̃n(t), and 0 otherwise, where |S| denotes the cardinality of set S.
Then, from (10), the optimal power allocation writes as:

pk(t) =

min

[
max

(
ζkn(t), 0

)
, Pk

]
, if k ∈ S̃n(t);

0, otherwise;
(12)

where

ζkn(t) = βkn(t)B

[(
Qlk(t)−Qrk(t)

)
τ

log(2) · V − N0

hkn(t)

]
. (13)

Finally, we consider the optimal scheduling at each MEH n. Since
(10) is a linear problem with respect to the {fkn(t)}k,n, its optimal
solution is always at the vertex of the polyhedral set [19]. In this
case, we have:

fkn(t) =

 Fn, if k = argmax
k∈Sn(t)

{Qrk(t)Jk};

0, otherwise.
(14)

This means that only the UE with the maximum value of Qrk(t)Jk
will be served by MEH n during time slot t.

3.2. UE’s Assignment via Matching Theory

The user assignment strategy is based on matching theory for col-
lege admission [15], which implements a coalitional game with low
complexity. In this case, we are dealing with a many-to-one match-
ing problem, in which one agent (AP-MEH pair) can be associated
to more than one agent from the other set (UE). The maximum num-
ber of UE’s that can be assigned to an AP-MEH pair is called quota.
Each UE builds a preference list with the aim of ranking all the AP-
MEH pairs. The scope of matching theory is then to find a stable
assignment between the two sets of agents [20], i.e., it must not exist
a situation where two UE’s α and β are assigned to AP-MEH pairs
A and B, respectively, but β prefers A to B and A prefers β to α.
The so called Deferred Acceptance (DA) algorithm solves this prob-
lem and converges to a stable matching with polynomial complex-
ity [20]. However, when the preference functions of UE’s are inter-
dependent1, the DA algorithm looses its efficiency. To cope with this
issue, as recently proposed in [13,21], our approach is based on two
games, whose rationale is illustrated in the following.

3.2.1. Matching game with fixed utility functions

The first game is played only at the first time slot, and is based on the
DA algorithm, with expected utility functions. To define the utilities

1In our case, this is true due to radio and computation resource sharing.

4761



in the first slot, since each user is not aware of all other UE’s utili-
ties, these function are built assuming that every AP-MEH fills up its
quota. In this way, for each UE, it is possible to evaluate the optimal
resource allocation for each pair AP-MEH according to (11), (12),
and (14), and thus evaluate the objective function in (10). Let us
then define as Gkn the value of the objective in (10) obtained by UE
k by accessing the pair AP-MEH n; and let Ukn = −Gkn denote
the corresponding utility associated with the pair k and n. Note that,
in this first slot game, the penalty function in (6) is not considered in
the user’s utilities, since the assignment process is at its first stage.
On the other side, the preference functions of the pairs AP-MEH are
based on the Signal to Noise Ratio (SNR) of UE’s, i.e., users will be
ranked in descending order with respect to their SNR. Then, based
on the aforementioned utility functions defined at both sets of agents
(i.e., UE’s and AP-MEH pairs), the network runs the DA algorithm.
Since we have fixed the utility functions, this first phase converges to
a stable matching, although this assignment can be very unbalanced,
since users do not know a priori which coalition other users will be-
long to at the end of the procedure. This situation might lead to poor
performance since many users will share radio and computation re-
sources when assigned to the same AP-MEH pairs.

3.2.2. Coalitional game for transfers among AP’s

To enhance the system performance, in each time slot after the first
one, we perform a coalitional game, where UE’s can request to be
transferred to other AP’s in order to improve their utilities. Denoting
by Π0 the initial assignment, i.e., the set of all coalitions Sn, ∀n
after the first game, we define the welfare of a coalition as [21]:

W (Sn) =
∑
k∈Sn

Ukn. (15)

Given Π0, each user builds the new utility functions based on this
conditions in the same way as described for the first game. Once the
preference functions are computed, a generic user k requests to be
transferred from coalition Sn to coalition Sn′ if its utility function is
improved by the transfer, i.e., if Ukn′ > Ukn. Once all the transfers
are requested, the pair AP-MEH involved in each transfer can either
accept or refuse it. In particular, a transfer is accepted if and only if
the target pair (i.e., the one accepting the new user) does not exceed
its quota and the social welfare of the two coalitions is improved. In
formulas, denoting by k the requesting user, by n the source pair and
by n′ the target pair, these two conditions can be cast as:

1. |Sn′ ∪ {k}| ≤ qn′ ;

2. W (Sn \ {k}) +W (Sn′ ∪ {k}) > W (Sn) +W (Sn′);

where qn′ is the quota of n′, and Sn \ {k} is the coalition obtained
by removing user k from Sn. This transfer phase stops if there are
no more requests, or no more transfers can be accepted by the net-
work. If two users request to be transferred to the same coalition,
only the user with the highest SNR is taken into consideration. In-
terestingly, this second game can be proved to converge to a Nash
stable partition [21]. This coalitional game is used in each time slot
to perform transfers (i.e., handovers) whenever a user finds a better
coalition according to the defined utilities. This procedure has a low
complexity and is amenable for real-time implementations.

4. NUMERICAL RESULTS

In this section, we present some numerical results to assess the per-
formance of the proposed algorithm when compared to a classical
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Fig. 1: Average behavior of Sum queue length versus sum power,
for different assignment strategies and values of Ntr.

SNR-based association, i.e., where each user is assigned to the AP
with the highest SNR. We use the channel pathloss model between
UE k and AP n considered in [22]. UE’s and AP’s are equipped
with arrays composed of Ntx = 4 antennas and Nrx = 144 anten-
nas, respectively. The average arrival rate in (2) is 2 × 106 bits per
slot, while the slot duration is set to 10 ms. The number Jk of bits
per CPU cycle is 10−1, for all k; the maximum CPU cycle frequen-
cies of the UE’s and the MEH’s are 109 and 5 × 109 CPU cycles/s,
respectively. We consider 10 users moving randomly in a squared
area of size 150 m, and 6 AP’s randomly deployed in the same area.
Whenever a handover occurs, we assume that the application state
is migrated over the destination AP during the subsequent Ntr time
slots, so that during this time, only local computations are allowed.
Figure 1 shows the tradeoff between the sum queue length [i.e., sum
of local and remote queues in (2) and (3)] and the power consump-
tion over all users, averaged over 100 simulations, considering two
assignment strategies: the proposed one based on matching theory
[cf. Sec. 3.2], and the classical SNR-based association. For any
combination of V and Ntr, we have chosen the penalty parameter σ
in (5) that gives the best empirical results. As expected, from Fig. 1,
we notice that the performance decreases for higher values of Ntr,
due to the larger delay required for migrating the computation af-
ter a handover occurs. However, we can appreciate the large gain
achieved by our matching algorithm with respect to the SNR-based
association. This is also due to the fact that our matching strategy
keeps into account the handover cost thanks to the penalty function
in (6), thus reducing the number of unnecessary handovers.

5. CONCLUSIONS

In this paper we have studied dynamic user assignment and resource
allocation for computation offloading with MEC. We have intro-
duced an online algorithmic framework that hinges on stochastic
optimization to deal with the dynamic nature of the system, and per-
forms user association using matching theory with transfers, in order
to strike the best trade-off between power consumption and queue
length (i.e., average delay). Numerical simulations assess the per-
formance of the proposed approach, and illustrate the potential gain
with respect to a classical SNR-based association in terms of long-
term average power consumption and average queue length, consid-
ering a dynamic scenario with users’ mobility.
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