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ABSTRACT

Semidefinite relaxation followed by randomization is a well-known
approach for approximating a solution to the NP-hard max-min fair
multicast beamforming problem. While providing a good approxi-
mation to the optimal solution, this approach commonly involves the
use of computationally demanding interior point methods. In this
study, we propose a solution based on superiorization of bounded
perturbation resilient iterative operators that scales to systems with
a large number of antennas. We show that this method outperforms
the randomization techniques in many cases, while using only com-
putationally simple operations.

Index Terms— Multicast beamforming, Semidefinite relax-
ation, Superiorization, Perturbation resilience

1. INTRODUCTION

Important applications in wireless networks involve multicast com-
munication, which can be defined as the transmission of identical
information to multiple users. Therefore, physical layer multicas-
ting schemes have been extensively investigated in the last two
decades. In particular, the authors of [1] show that the performance
of multicast transmission can be greatly improved by exploiting
channel state information (CSI) at the transmitter. They formulate
a max-min-fair multicast beamforming problem that aims at max-
imizing the lowest signal-to-noise ratio (SNR) among a group of
users, subject to a unit power constraint on the beamforming vector.
While this formulation of the multicast beamforming problem is
known to be NP-hard, the optimal solution can be approximated by
semidefinite relaxation (SDR) with subsequent randomization [1].
This technique, however, has two major drawbacks. Firstly, solving
the semidefinite program with standard interior point methods or
first order methods can be both computationally complex and time
consuming. Secondly, although performance bounds are provided
in [2], the worst case approximation gap increases with the number
of users.

To address the drawbacks of the aforementioned methods, we
pose the semidefinite relaxation of the multicast beamforming prob-
lem as a convex feasibility problem in a real Hilbert space of Her-
mitian matrices. One of the main advantages of this formulation is
that it enables us to apply superiorization techniques [3]. In more
detail, we first derive a fixed point algorithm that is known to con-
verge to the solution to the proposed convex feasibility problem. By
using recent results in the literature [4], we can show that this al-
gorithm is resilient to bounded perturbations. Therefore, we further
improve the proposed fixed point algorithm by adding perturbations
that try to steer the iterates towards the unknown solution to the orig-
inal NP-hard problem. Simulations show that the resulting algorithm

produces beamforming vectors with performance close to optimal in
some practical scenarios, and it greatly outperforms previous meth-
ods based on semidefinite programming and randomization.

This paper is organized as follows. In the remainder of this sec-
tion, we define notation and system model, state the multicast beam-
forming problem, and briefly present existing solutions. In Section 2,
we propose a fixed point algorithm that approximates the noncon-
vex beamforming problem using bounded perturbations. Numerical
results are provided in Section 3, and we complete the paper with
conclusions in Section 4.

1.1. Notation

In the following, lower case letters denote scalars, lower case let-
ters in bold typeface denote column vectors, and upper case letters
in bold typeface denote matrices. For any closed convex set C in
a Hilbert space (H, 〈·, ·〉), we denote by PC(X) the projection of
X ∈ H onto C, and by (∀X ∈ H) TλC(X) := X+λ(PC(X)−X)
the relaxed projection onto C, where λ ∈ (0, 2) is a relaxation pa-
rameter. We denote by Id the identity operator, and by IN and 0N
the N ×N -identity matrix and the N ×N -all-zero matrix, respec-
tively. We write X < 0 for positive semidefinite matrices X. The
spectrum of a matrix X is denoted by σ(X).

1.2. System Model, Problem Definiton, and Existing Solutions

Following the system model in [1], we assume that a network has a
transmitter withN antennas and a multicast groupK = {1, . . . ,K}
of K users equipped with single receive antennas. In this multi-
cast setting, the transmitter sends the same information x ∈ C to
all users. The receive signal for the kth user can be written as
yk = wHhkx + nk, where w ∈ CN is a beamforming vector,
hk ∈ CN is a realization of a complex Gaussian random vector
representing the channel to user k, and nk ∈ C — drawn from the
distribution CN (0, σ2

k) — is the noise at the receiver. If γk denotes
the SNR-requirement of user k, the multicast beamforming problem
with QoS-constraints1 can be formally posed as [1, 5]:

minimize
w∈CN

‖w‖22 (1)

s.t. (∀k ∈ K) |wHhk|2 ≥ γk.

Problem (1) is a quadratically constrained quadratic program
with nonconvex constraints, and this problem is known to be NP-
hard [1]. Therefore, previous studies [1, 5] have proposed alterna-
tive formulations based on semidefinite programming that give rise

1It has been shown in [1] that the max-min fair and QoS constrained mul-
ticast beamforming problem formulations are equivalent up to scaling if all
γk are identical.
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to more tractable optimization problems. One of the main ideas of
these reformulations is to exploit the equality trace(vvH) = vHv,
which is valid for any vector v ∈ CN , to obtain the following opti-
mization problem from (1):

minimize
X∈CN×N

trace(X) (2)

s.t. (∀k ∈ K) trace(XQk) ≥ γk
XH = X, X < 0

rank(X) = 1,

where Qk = hkh
H
k . Note that, if w? is a solution to (1), then

X? = w?w
H
? is a solution to (2), and the converse is also valid.

Problem (2) is still intractable in general because of the noncon-
vex rank-1 constraint. However, it is in a form that enables us to
obtain a convex relaxation by simply dropping the rank constraint:

minimize
X∈CN×N

trace(X) (3)

s.t. (∀k ∈ K) trace(XQk) ≥ γk
XH = X, X < 0,

which is a convex semidefinite program that can in principle be
solved with off-the-shelf methods. One of the main challenges of the
above formulation is to recover a beamforming vector from a solu-
tion X̃ to (3). A simple technique is to use as the beamforming vec-
tor w the largest principal component of a solution X̃ to Problem (3),
and to scale this vector to satisfy all constraints in (1). However, this
approach produces beamforming vectors that might be highly sub-
optimal in the sense of (1). To mitigate this problem, the authors
of [1] propose randomization techniques to generate a set {wl} of
candidate beamforming vectors from X̃. After these candidate vec-
tors are scaled such that they satisfy all QoS requirements, the one
with lowest power is selected. We refer readers to [1] for detailed
information on these randomization techniques.

2. PROPOSED ALGORITHM

The approach described in the previous section has two potential
drawbacks that may limit its applicability. First, Problem (3) is typi-
cally solved with standard interior point methods, and these methods
can suffer from numerical issues in large-scale problems. Second,
the performance of the randomization techniques typically decreases
with the number of constraints [2], whereby sampling a satisfactory
beamforming vector may become prohibitively time-consuming.

To address these drawbacks, we formulate the semidefinite re-
laxation of the QoS-constrained beamforming problem as a convex
feasibility problem in a real Hilbert space in Section 2.1. In Sec-
tion 2.2, we make use of fixed point algorithms to solve the feasibil-
ity problem, and in Section 2.3 we exploit their bounded perturbation
resilience property to try to enforce a rank-1 solution, as required in
the original problem formulation in (2). Section 2.4 considers some
practical aspects of the proposed method.

2.1. Semidefinite Relaxation as a Convex Feasibility Problem

To recast Problem (3) as a convex feasibility problem, we first need
to define an appropriate Hilbert space. To this end, let H := {X ∈
CN×N | X = XH} be the real Hilbert space of Hermitian matrices
with the inner product

〈X,Y〉 := Re {trace (XY)} (4)

inducing the standard Frobenius norm

||X|| =
√
〈X,X〉 =

√
trace (XX). (5)

Note thatH satisfies all axioms of a real inner product space because
〈X,Y〉 = 〈Y,X〉 and scalar multiplication is restricted to real
scalars, whereby (∀X,Y ∈ H) (∀α ∈ R) 〈αX,Y〉 = α 〈X,Y〉.
Positive definiteness is clear from the fact that this particular inner
product induces the Frobenius norm.

Now, consider the following convex feasibility problem:

Find X ∈ H such that X ∈ C? =

K⋂
k=1

Ck ∩BP ∩ C+, (6)

where
C+ :=

{
X ∈ H| (∀v ∈ CN ) vHXv ≥ 0

}
(7)

is the positive semidefinite cone (X ∈ C+ ⇔ X < 0),

Ck := {X ∈ H| 〈X,Qk〉 ≥ γk} , (8)

is the half-space representing the QoS-constraints of user k ∈ K,
and

BP := {X ∈ H| 〈X, IN 〉 ≤ P} (9)

is the half-space containing matrices whose trace is upper bounded
by a given design parameter P > 0. If this parameter is chosen to
be the optimal objective value P = trace(X̃) of the problem in (3),
we can verify that X̃ solves (6) if and only if X̃ solves (3). Further,
let P ≥ trace(X?) = ‖w?‖22, where X? = w?w

H
? is a solution

to Problem (2). In this case, any solutions to Problem (2) solves
Problem (6), while the converse does not hold in general.

2.2. Algorithmic Solution to the Feasibility Problem

The advantage of working with the convex feasibility formulation in
(6) is that this problem can be solved by a plethora of computation-
ally simple projection methods. In particular, it can be solved with
the projections onto convex sets (POCS) algorithm2 given by

Xn+1 = T?(Xn) := PC+T
λ
BP
TλCK

. . . TλC1
(Xn), (10)

with relaxed projections TλC as defined in Section 1.1.
For reference, the projections of X ∈ H onto the half spaces Ck

and BP are given by

(∀k ∈ K) PCk (X) =

{
X, if X ∈ Ck
X + γk−〈X,Qk〉

||Qk||2
Qk, otherwise

(11)

and

PBP (X) =

{
X, if X ∈ BP
X + P−〈X,IN 〉

N
IN , otherwise

, (12)

respectively. Using the eigendecomposition X = VΛVH , we can
write the projection onto the positive semidefinite cone as

PC+(X) = VΛ+VH , (13)

where Λ+ = diag (max(λ1, 0), . . . ,max(λN , 0)), and (∀i ∈
{1, . . . , N}) λi ∈ σ(X) are the (real-valued) eigenvalues of
X ∈ H, such that Λ = diag(λ1, . . . , λN ).

2In general, different relaxation parameters can be used for the particular
projections. However, we use the same relaxation parameter for all relaxed
projections for simplicity.
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According to the fundamental theorem of POCS [6, Thm 2.5-
1], the sequence (Xn)n∈N produced by the update rule in (10) is
guaranteed to converge to a solution to the feasibility problem in (6)
for any X0 ∈ H, if a solution exists.

As mentioned before, extracting the dominant principal compo-
nent from the solution obtained with (10) is likely to result in bad
performance compared to the solution to the original problem in
(1). It is therefore reasonable to seek a feasible solution that con-
centrates much of its energy in the largest principal component (i.e.,
whose largest principal component is as large as possible, while the
other principal components are as small as possible). This can be
achieved by adding perturbations in each iteration of (10). To this
end, we make use of the superiorization methodology [3] to define a
perturbed version of the operator T? in (10) that preserves the con-
vergence guarantees towards a point in C?.

2.3. Incorporating the Rank Constraint by Bounded Perturba-
tions

In this subsection, we define a superiorized version of the operator
T? by adding bounded perturbations in each iteration, with the intent
to steer the iterates towards the set of rank-1 matrices. While objec-
tive functions used for superiorization are usually convex functions,
the distance to this nonconvex set constitutes a nonconvex superior-
ization objective, whereby this approach does not follow exactly the
superiorization methodology in [3]. Nevertheless, we show that T?
is bounded perturbation resilient, such that its superiorized version

Xn+1 = T?(Xn + βnYn) (14)

is guaranteed to converge to a point in C? if βnYn are bounded
perturbations; i.e., (βn)∞n=0 is a sequence of nonnegative real num-
bers such that

∑∞
n=0 βn < ∞, and the sequence (Yn)

∞
n=0 is

bounded. To define the sequence of perturbations, we use the
eigenvalue decomposition Xn = VnΛnVH

n with eigenvalues
Λn = diag(λn1 , . . . , λ

n
N ) ordered such that (∀i > j) λni ≥ λnj .

Then (∀n ∈ N) the matrix

Yn = −Vndiag(0, λ
n
2 , . . . , λ

n
N )VH

n . (15)

subtracts all principal components of Xn except for the largest.
In [4, Thm. 3.1], the authors have proved the bounded perturba-
tion resilience of α-averaged mappings with nonempty fix-point
set in finite-dimensional real Hilbert spaces. This result equally
applies to mappings operating on the real Hilbert space of complex
matrices (H, 〈·, ·〉) defined above because of the isomorphism be-
tween any two Hilbert spaces of the same dimension. In particular,
(H, 〈·, ·〉) is isometrically isomorphic to the real Euclidean Hilbert
space RN(N+1) endowed with the standard inner product, as shown
below.

Proposition 1 H is isometrically isomorphic to a real Euclidean
space RJ with standard inner product 〈x,y〉RJ = xTy, where J =
N(N + 1). The bijection between the two spaces is given by

φ(X) =

[
Re{vec(X)}
Im{vec(X)}

]
, (16)

where vec(X) is a function which extracts the upper triangular part
of X (including the diagonal entries) into an N(N+1)

2
-dimensional

complex vector.
Proof: H is said to be isometrically isomorphic to RJ if there

exists a bijective linear mapping φ : H → RJ such that (∀X,Y ∈

H) 〈X,Y〉H = 〈φ(X), φ(Y)〉RJ . Using the definition in (4), we
obtain

〈X,Y〉H = Re
{
vec(X)T vec(Y)

}
(17)

= Re{vec(X)}TRe{vec(Y)}+ Im{vec(X)}T Im{vec(Y)}
= 〈φ(X), φ(Y)〉RJ .

To show convergence properties of the iterates in (14), we need
the following known result, and we include the proof for complete-
ness.

Remark 1 [7, Example 17.12(a)] The operator T? in (10) is α-
averaged.
Proof: By [8, Definition 4.23], for any nonempty subset D ⊆ H,
T : D → H is α-averaged if there exist α ∈ (0, 1) and a nonexpan-
sive operator R : D → H such that T = (1− α)Id + αR.

Note that, for every nonempty closed convex subset C ⊂ H,
the reflector RC = Id + 2(PC − Id) is nonexpansive. Therefore,
∀λ ∈ (0, 2), the operator

TλC = Id + λ(PC − Id) = Id +
λ

2
(RC − Id) (18)

is λ/2-averaged. Further (see e.g. [4]), the composite of finitely
many averaged mappings remains averaged.

Consequently, according to Proposition 1, Remark 1, and [4, Thm.
3.1], the algorithm in (14) is guaranteed to converge to a point in
the solution set C? of the feasibility problem in (6), if C? 6= ∅
and βnYn are bounded perturbations. The boundedness of the se-
quence (Yn)

∞
n=0 can be easily imposed by replacing Yn with Y′n =

min
(

r
‖Yn‖ , 1

)
Yn for some r > 0. 3

In order for the feasible set C? to contain a solution with rank
1, the desired beamformer power P in the definition of BP must be
at least as large as the optimal objective in Problem (2). This value
cannot be computed efficiently, but we show in Section 2.4.1 how
this problem can be bypassed.

2.4. Practical Aspects

2.4.1. Dropping the power constraint

Substituting the convex optimization problem in (3) by the feasibil-
ity problem in (6) entails the disadvantage that an appropriate value
of P for the power constraint has to be known in advance. Unfor-
tunately, determining the optimal value P is difficult. However, our
numerical experiments show that severely overestimating the power
of the beamforming vector (or even completely discarding the power
constraint) affects the performance only marginally4 when the algo-
rithm is initialized with the all zero matrix X0 = 0N .

2.4.2. Computational efficiency

Calculating the perturbations in (15) involves computationally de-
manding matrix decompositions. However, only the largest eigen-
component is required, which allows the use of fast algorithms (e.g.
[9]) for large-scale problems.

3For the numerical experiments in Section 3, we did not use this trun-
cation, as we observed that the norm of the perturbations always decreased
monotonically over the iterations.

4Note that the resulting beamforming vectors were normalized to unit
power for comparison. Slackening the power constraint does therefore not
improve the worst-case SNR.
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For the projection onto C+ in (13), the entire eigenvalue decom-
position is required. Nevertheless, we note that neither the projec-
tions onto the QoS-constraintsCk, nor the perturbation may result in
points X /∈ C+. Therefore, the projection onto C+ can be omitted
(or included only every few iterations for numerical stability), when
the power constraint is dropped.

In addition, the projections onto the half spaces can be computed
in an N(N + 1) dimensional real Hilbert space according to Propo-
sition 1, so the number of coefficients is roughly halved for large
N .

3. SIMULATIONS

In this section, we compare the performance of the algorithm
proposed in (14) to the SDR technique with randomization [1].
Throughout this investigation, we set γk = 1, and we assume i.i.d.
Rayleigh fading channels hk ∼ CN (0, IN ) and noise with unit
variance σ2

k = 1 for all users. Once the beamforming vectors w are
computed with the respective methods, we scale them to unit power.
In this way, the solutions correspond to those of the max-min-fair
beamforming problem definition [1], which allows us to consider the
lowest SNR among all users in the multicast group as a performance
measure:

SNRmin(w) = min
k∈K

|wHhk|2

σ2
k‖w‖22

. (19)

The solution X̃ to the relaxed SDP problem is computed with a
standard interior point solver in MATLAB. Subsequently, 104 can-
didate beamforming vectors are generated with each of the random-
ization techniques ”randA”, ”randB”, and ”randC” described in [1].
After these vectors have been scaled to unit power, the one with the
highest worst-case SNR is selected. An upper-bound on the worst-
case SNR can be obtained by normalizing the solution X̃ to the re-
laxed problem in (3) to unit power:

(
∀w ∈ CN

)
SNRSDR = min

k∈K

hHk X̃hk

trace(X̃)σ2
k

≥ SNRmin(w).

(20)
For the proposed method in (14), the sequence (βn)n∈N in (14)

was set to βn = 0.9n/500 in all simulations, and the relaxation pa-
rameter of the relaxed projections in (10) was set to λ = 1.9. We
dropped the power constraint (i.e. P = ∞) and initialized with
X0 = 0N . The algorithm was terminated when a stopping criterion
‖Xn+1 − Xn‖ ≤ ε with ε = 10−6 was reached or 1000 itera-
tions were exceeded. The beamforming vector was then obtained by
extracting the largest principal component from Xn.

Fig. 1 shows SNRmin for K = 30 users as a function of the
number N of transmit antennas. In Fig. 2, SNRmin is depicted for
N = 30 transmit antennas as a function of the numberK of users. It
can be seen that the proposed method outperforms all randomization
techniques, and the gains become more pronounced with increasing
number of antennas and users. Further, if N is large, the worst-case
SNR of the proposed method in Fig. 1 is close to SNRSDR, so the
solutions obtained with the proposed algorithm necessarily close to
optimal because SNRSDR ≥ SNRmin(w?), where w? is a solution
to (1).

4. CONCLUSION

In this paper, we formulated the semidefinite relaxation of the QoS-
constrained multicast beamforming problem as a feasibility in a real

Hilbert space. We showed that the relaxed projection algorithm in
(10) is bounded perturbation resilient, and defined a superiorized
version that aims to find a rank-1 solution. Numerical results indicate
that this approach can outperform previous methods based on SDR
and randomization, especially for large-scale problems. Further, this
approach does not introduce the necessity of parameter tuning (i.e.
guessing the target beamformer power), as it achieves competitive
performance even without a power constraint.
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