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ABSTRACT

In this paper, we consider the large-scale case of the ro-
bust beamforming problem with interference temperature
constraints. Previous semidefinite relaxation (SDR) method
becomes impracticable because of its expensive computa-
tional cost. Even successive convex approximation (SCA)
method, the state-of-the-art method, cannot tackle this prob-
lem efficiently. Thus, we are motivated to design two efficient
first-order methods, multi-block alternating direction method
of multipliers (ADMM) and linear programming-assisted
subgradient descent (LPA-SD), to solve it. Numerical results
demonstrate the potential of our proposed methods in terms
of both computational efficiency and solution quality.

Index Terms— Massive robust beamforming, linear pro-
gramming, subgradient descent, multi-block ADMM, SCA

1. INTRODUCTION

In this paper, we consider the robust transmit beamforming
design for secondary multicast transmission in a massive
multiple-input multiple-output (MIMO) cognitive radio (CR)
network [15]. We assume that the channel state information
(CSI) is erroneous or limited at the secondary base station
(SBS). Under this scenario, the primary users (PUs) and sec-
ondary users (SUs) may interfere with each other. Therefore,
we need to limit the interference temperature (IT) associ-
ated with the PUs. Because of the imperfect CSI, IT should
be satisfied for all possibilities of the channel error, which
leads to the robust IT constraints. In our formulation, the
worst SUs’ signal-to-noise ratio (SNR) will be maximized
subject to the transmit power constraint and the robust IT
constraints. Similar formulations have been considered in
[15, 21, 8, 20, 17, 18].

Generally speaking, this robust transmit beamforming
problem and its variants are NP-hard [9, 16]. SDR [14] is
well-developed to solve them approximately, in which the
robust IT constraints can be eliminated by S-lemma [5, 21].
However, in the massive MIMO system, the computational
cost of solving the semidefinite programming (SDP) is un-
acceptable when either the number of users or antennas is
very large. Hence, we are motivated to design some cheap
first-order methods to tackle it.

Fortunately, the robust beamforming problem can be
reformulated into an equivalent deterministic quadratically
constrained quadratic programming (QCQP) with a bunch of
difficult constraints1[5, 15]. Note that many efficient first-
order methods have been proposed previously to solve the
non-convex QCQP [4, 10, 12, 7, 11, 19]. The most popular
one should be successive convex approximation (SCA) and
its variants [6, 11, 12]. For SCA, one of the most impor-
tant issue is how to solve the convex sub-problems quickly.
Recently in [11], Konar and Sidiropoulos proposed to use
Nesterov smoothing based gradient descent, mirror proximal
method and ADMM to solve the subproblems, which are effi-
cient when there is only one simple convex constraint2 in the
QCQP. However, when these techniques are applied to tackle
the robust beamforming problem, these complex robust IT
constraints still lead to a heavy computational cost.

In this paper, we propose two efficient first-order methods
to solve the robust beamforming problem. The first one is the
linear programming-assisted subgradient descent (LPA-SD)
method, which is motivated by [2, 7]. It is a novel subgra-
dient descent (SD) method. At each iteration, we firstly de-
fine two active sets consisting of these active objective func-
tions and constraints, respectively. Then we construct a linear
programming (LP) to search the descent direction with re-
spect to the objective functions and constraints in the active
sets. It is similar to SCA, but we only need to solve a LP
in each step. Besides, the size of each sub-problem (LP) is
much smaller than the original problem because we only take
the active functions and constraints into consideration. Thus,
the computational cost in each iteration is much cheaper than
SCA.

Another method is the standard multi-block ADMM,
which is motivated by [1, 4, 10, 19]. After introducing the
auxiliary and slackness variables, we can split these difficult
constraints into some easy constraints. Then we can min-
imize the augmented Lagrangian by solving a sequence of
subproblems. Note that the closed-form solution to each sub-
problem can be found, and only one matrix inverse needs to
be computed in the iteration. Thus, the computational cost in
each step is much cheaper than SCA and even LPA-SD. With
some well-chosen parameters for proximal terms, ADMM

1The Euclidean projection has no closed-form solution.
2The Euclidean projection has closed-form solution
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converges very fast to some critical point. Our numerical
results also show both the computational efficiency and the
high-level solution quality of the LPA-SD and ADMM.

2. PROBLEM STATEMENT AND REFORMULATION

We consider a massive MIMO system, where the SBS is
equipped with N antennas to transmit a common signal to
M SUs while limiting the IT to PUs. The transmit beam-
forming vector w ∈ CN with a power constraint ‖w‖ ≤ P ,
where P 2 is the average transmit power, is employed to trans-
mit the commom information-bearing signal x ∈ C to SUs.
Since the existence of the noise in signal transmission, the
corresponding received signal at ith SU is modeled as

yi = hHi wx+ ni, i = 1, . . . ,M, (2.1)

where hi is the channel between the SBS and ith SU, and
ni is a complex Gaussian noise with mean zero and variance
σ2
i . We assume that the noise ni is independent of transmit

signal x and channel hi. Based on the model, the received
SNR at ith SU is given by |hHi w|2/σ2

i . Besides, we model
the channel between the SBS and jth PU as

zj = aj + δj , j = 1, . . . , J, (2.2)

where aj ∈ CN is the estimated channel vector and δj ∈ CN
is the error vector. Here, δj is always bounded, i.e., ‖δj‖ ≤
dj for some given dj ≥ 0. Considering the erroneous channel
information, we have to limit the IT associated with the PUs:

max
‖δj‖≤dj

|wH(aj + δj)|2 ≤ η2j , j = 1, . . . , J, (2.3)

which are the robust IT constraints. Note that we can actu-
ally find out the worst δj’s which maximize the left hand side
of (2.3), so they are equivalent to the following deterministic
constraints [5]

dj‖w‖+ ‖aHj w‖ ≤ ηj , for j = 1, . . . , J. (2.4)

Based on the above setting, we can model the robust beam-
forming problem with interference temperature constraints as
follows,

max
w∈CN

min
i=1,...,M

|hHi w|2/σ2
i (2.5a)

s.t. dj‖w‖+ ‖aHj w‖ ≤ ηj , for j = 1, . . . , J, (2.5b)

‖w‖ ≤ P. (2.5c)

To simplify the algorithmic development and theoretic anal-
ysis, we convert this problem from complex domain to real
domain. Assume that w̃ = w1 + w2i ∈ CN , then let w =
(w1,w2) ∈ R2N be the corresponding real vector. Simi-
larly, assume that Di = hi/σi(hi/σi)

H ∈ CN×N , where
hi = h1

i + ih2
i ∈ CN , then the corresponding real matrix is

HiH
T
i =

[
Re(Di) −Im(Di)
Im(Di) Re(Di)

]
, (2.6)

where Hi = 1
σi

[
h1
i −h2

i

h2
i h1

i

]
. Consequently, we can convert

(2.5) into the following problem in the real domain,

min
w∈R2N

max
i=1,...,M

wTGiw (2.7a)

s.t. dj‖w‖+ ‖AT
j w‖ ≤ ηj , for j = 1, . . . , J, (2.7b)

‖w‖ ≤ P, (2.7c)

whereGi = −HiH
T
i andAj =

[
Re(aj) −Im(aj)
Im(aj) Re(aj)

]
.

3. ALGORITHM DESIGN AND ANALYSIS

Now, we are ready to present our first-order methods to solve
the problem (2.7). The first one is LPA-SD, whose computa-
tional cost is insensitive to the number of usersM or antennas
N . Another one is multi-block ADMM, which can split the
difficult constraints in (2.7) and tackle them efficiently.

Before we design the algorithms, some notations need to
be clarified. We define fi(w) = wTGiw and F (w) =
max fi(w) where i = 1, . . . ,M . Besides, denote that
gj(w) = dj‖w‖ + ‖AT

j w‖, j = 1, . . . , J and gJ+1(w) =
‖w‖ with ηJ+1 = P . Furthermore, define the k-dimension
simplex as ∆k = {x ∈ Rk : eTk x = 1, x ≥ 0}, where
ek ∈ Rk denotes a all-ones vector. Furthermore ∇f(w)
denotes the gradient or subgradient of f at w, and I denotes
the identity matrix.

3.1. Linear Programming-Assisted Subgradient Descent

Given any w ∈ R2N and δ > 0, let Iδ(w) := {i ∈
{1, . . . ,M} : fi(w) ≥ F (w) − δ} be the index set con-
sisting of all the δ-active objective functions. Similarly, we
can define the index set consisting of all the ε-active con-
straints Iε(w) := {j ∈ {1, . . . , J + 1} : gj(w) ≥ (1− ε)ηj}
for any ε ∈ [0, 1). Based on the active constraint set Iε(w),
we can define the ε-tangent space at w,

Tε(x) = {x ∈ R2N : xT∇gj(w) = 0, j ∈ Iε(w)}. (3.1)

Furthermore, the projected gradient of w onto the tangent
space Tε(w) can be computed as follows,

gradfi(w) = (I −UUT )∇fi(w), (3.2)

whereU is the basis matrix of subspace spanned by∇gj(w), j ∈
Iε(w). For simplicity, denote that pi(w) = gradfi(w). Then
we can apply the following LP to find a good descent direc-
tion at iteration point w,

max
t,λ

t (3.3a)

s.t. pi(w)T

 ∑
i∈Iδ(w)

λipi(w)

 ≥ t, (3.3b)

i ∈ Iδ(w), λ ∈ ∆|Iδ(w)|. (3.3c)
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Compactly, we can rewrite the above LP as follows:

max
t,λ

t s.t. BTBλ ≥ te, λ ∈ ∆|Iδ(w)|, (3.4)

where B ∈ R2N×|Iδ(w)|, and the columns of B consists
of {pi(w), i ∈ Iδ(w)}. Let (t∗, λ∗) be the optimal solu-
tion of the above LP. Hence, the descent direction we find is
d = Bλ∗. Furthermore, to guarantee sufficient decrease of
LPA-SD at each iteration, an Armijo-type line-search rule is
employed to find the stepsize:

θ̄ = max
l≥0
{θl : F

(
c(w − θld)

)
≤ F (w)− γθlt∗}, (3.5)

where c > 0, 0 < θ < 1 and 0 < γ ≤ 0.5. Here, we
introduce c as the scaling parameter to ensure the feasibility
of w̃ := w − θld. A simple choice of c is given by

c = 1/max

{
g1(w̃)

η1
, . . . ,

gJ+1(w̃)

ηJ+1
, 1

}
. (3.6)

It’s easy to check that any limit point of Algorithm 1 is a KKT
point of Problem (2.7). A similar proof can be found in [7].

Algorithm 1 LPA-SG for robust beamforming
1: Input: w0 ∈ R2N , δ0, ε0, θ ∈ (0, 1) and γ ∈ (0, 0.5].
2: for k = 0, 1, 2, . . . do
3: Compute F (wk) and the active index set Iδk(wk).
4: Compute the active constraint set Iεk(wk) and the ba-

sis matrix U via QR decomposition.
5: Compute the projected gradient pi(w), i ∈ Iδk(wk).
6: Solve the LP (3.4) to get (t∗, λ∗), then set dk = Bλ∗.
7: if ‖dk‖ ≤ δk then
8: δk+1 = δk/2, εk+1 = εk/2
9: end if

10: Choose θ̄, c via (3.5), (3.6) andwk+1 = c(wk− θ̄dk).
11: end for

3.2. Multi-block ADMM

Here, we consider to use multi-block ADMM to solve (2.7)
directly. Firstly, we reformulate (2.7) as follows,

min
w,t

t (3.7a)

s.t. ‖HT
i w‖ ≥

√
−t, i = 1, . . . ,M, (3.7b)

dj‖w‖+ ‖AT
j w‖ ≤ ηj , j = 1, . . . , J, (3.7c)

‖w‖ ≤ P. (3.7d)

Introducing the auxiliary and slackness variables to split the
constraints,

min
w,t,x,y,z,u,v

t (3.8a)

s.t. ‖xi‖ − ui =
√
−t, i = 1, . . . ,M, (3.8b)

dj‖y‖+ ‖zj‖+ vj = ηj , j = 1, . . . , J, (3.8c)

xi = HT
i w, i = 1, . . . ,M, (3.8d)

y = w, zj = AT
j w, j = 1, . . . , J, (3.8e)

‖y‖ ≤ P, u ≥ 0, v ≥ 0. (3.8f)

Here, the augmented Lagrangian for (3.8) is defined as fol-
lowing,

L(w, t, x, y, z, u, v;λ, γ, ζ, α, β) = t+

M∑
i=1

λi(‖xi‖ − ui −
√
−t) +

J∑
j=1

γj(dj‖y‖+ ‖zj‖+ vj − ηj)+

M∑
i=1

ζTi (xi −HT
i w) + αT (y −w) +

J∑
j=1

βT
j (zj −AT

j w) +
ρ1
2

M∑
i=1

(‖xi‖ − ui −
√
−t)2 + ρ2

2

J∑
j=1

(dj‖y‖+ ‖zj‖+ vj − ηj)2+

ρ3
2

M∑
i=1

‖xi −HT
i w‖2 + ρ4

2
‖y −w‖2 + ρ5

2

J∑
j=1

‖zj −AT
j w‖2.

Then we can minimize the augmented Lagrangian with fixed
positive ρ1, ρ2, ρ3, ρ4 and ρ5. The update for the multi-block
ADMM follows the traditional update of ADMM. For each
subproblem, the closed-form solution can be computed. Be-
cause of the limitation of the space, we only provide closed-
form solutions for some tough subproblems,

tk+1 = −

(
1

ρ1M − 2
max

{
0, ρ1

M∑
i=1

(‖xki ‖ − uk
i ) +

M∑
i=1

λk
i

})2

.

xk+1
i = min

{
b1 − ‖c1‖

2a1
, 0

}
c1
‖c1‖

, where a1 =
1

2
(ρ1 + ρ3),

b1 = λk
i − ρ1(uk+1

i +
√
−tk+1), c1 = ξki − ρ3Hiw

k.

yk+1 =


0, if ‖c2‖ < b2,
b2−‖c2‖

2a2

c2
‖c2‖

, if b2 ≤ ‖c2‖ ≤ 2a2 + b2,

− c2
‖c2‖

, if ‖c2‖ > 2a2 + b2,

where a2 =
ρ2
2

J∑
j=1

d2j +
ρ4
2
, c2 = αk − ρ4wk,

b2 = (γk)T d+ ρ2

J∑
j=1

(‖zkj ‖+ vk+1
j − ηj)dj .

zk+1
j = min

{
b3 − ‖c3‖

2a3
, 0

}
c3
‖c3‖

, where a3 =
1

2
(ρ2 + ρ5),

b3 = γk+1
j + ρ2(dj‖yk+1‖+ vk+1

j − ηj), c3 = βk
j − ρ5AT

j w
k.

In the update of t, we choose ρ1 > 2
M . Note that in the

update ofwk, the matrix inverse can be computed in advance
for fixed ρ3, ρ4, ρ5, thus all the updates are very cheap.

4. NUMERICAL RESULTS

In this section, we provide our numerical results to demon-
strate the solution quality and efficiency of the LPA-SD and
multi-block ADMM. Firstly, we compare both the value of
SNR and computation time of LPA-SD, ADMM with SCA
method under the massive MIMO setting. Secondly, we com-
pare LPA-SD, ADMM, SCA with SDR to check the solution
quality under the small-scale case. Here, our codes are imple-
mented in MATLAB R2018a and the tests are conducted on
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64-bit Windows desktop with Intel(R) Core(TM) i5 (3.4GHz)
and 8GB of RAM.

We generate the data as follows: the SU’s actual channel
hi follows the standard complex normal distribution hi ∼
CN (0, I), and PU’s estimated channel aj ∼ CN (0, I/

√
N).

Besides, noise variance σi = 1 for all users, and the transmit
power P = 1. Furthermore, the bounds of PU channel errors
d are generated from the uniform distribution d ∼ U(0, 1),
and the upper bounds of IT are set as η = d+n, where n also
follows the uniform distribution n ∼ U(0, 1).

We randomly choose the same initial point for LPA-SD,
ADMM and SCA, and use the same stopping criterion as

|F (wk)− F (wk−5)|/|F (wk)| ≤ 10−4, k ≥ 5, (4.1)

i.e., we check the change of function value every 5 iterations,
and once the change is small, we stop the algorithm. We re-
peat the tests 100 times and take the average to avoid the in-
fluence of randomness.

4.1. Computational Efficiency

Here, we will compare our LPA-SD, multi-block ADMM
with standard SCA algorithm (SCA-MOSEK). In detail, we
linearize the piece fi(w) at the point wk in the iteration
k ≥ 0, just as the technique in [11], and employ MOSEK
to solve the sub-problem. In LPA-SD algorithm, we set the
parameters as δ0 = ε0 = θ = 0.5, δ̄ = 10−4 and γ = 1/2. In
ADMM, we choose ρ1 = ρ2 = ρ3 = ρ5 = 0.5 and ρ4 = 1 in
the first case, while ρ1 = ρ2 = ρ3 = ρ5 = 0.25 and ρ4 = 0.5
in the second case.
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Fig. 1. The worst SUs’ SNR and computation time scale with
N while M = 50 and J = 3.

In Fig. 1, we fix the number of users M = 50 and the
number of constraints J = 3, and let the number of antennas
N change from 100 to 500; While in Fig. 2, we fix N = 30
and J = 3, and letM change from 100 to 500. According the
results in both figure, we can see that LPA-SD and ADMM
can achieve the similar SNR as the SCA through less compu-
tational time. Besides, we can observe that LPA-SD is insen-
sitive to the number of users and antennas. With the increas-
ing number of users or antennas, the advantages of LPA-SD
and ADMM is becoming more and more obvious.
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Fig. 2. The worst SUs’ SNR and computation time scale with
M while N = 30 and J = 3.

4.2. Solution Quality

In this part, we use the SDR and SCA-MOSEK as the bench-
mark to check the solution quality of LPA-SD and multi-block
ADMM in terms of SNR. In the first test, we fix the number
of users M = 5 and the number of PUs J = 3, then increase
the number of antennas N from 5 to 25; While in the second
test, we fix N = 5 and J = 3, then increase M from 5 to
25. In SDR, the number of Gaussian randomization is set as
10000. The parameters setting in LPA-SD is same as before.
In ADMM, we choose ρ1 = ρ2 = ρ3 = ρ5 = 5 and ρ4 = 10
in the first cases, while ρ4 = 20, and others are same in the
second case. It is easy to see that both LPA-SD and ADMM
return quite good solutions under the above scenarios.
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Fig. 3. Small-size robust MIMO

5. CONCLUSION

In this paper, we proposed two efficient and effective first-
order methods, LPA-SD and multi-block ADMM, to solve the
robust beamforming problem with interference temperature
constraints. The experimental results corroborate that our al-
gorithms have a great potential in comparison with SDR and
SCA in terms of both computational efficiency and accuracy.
An interesting future direction is to applying these first-order
methods to solve other robust problems in the MIMO system,
like robust multi-group multicast beamforming [3, 13].
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