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ABSTRACT

This paper considers symbol-level precoding (SLP) for the mul-
tiuser multiple-input single-output (MISO) downlink scenario. By
exploiting symbol constellation information, SLP has the ability to
achieve much better performance than traditional linear beamform-
ing schemes. In this work, we propose an SLP design formulation
under quadrature amplitude modulation (QAM) constellations. The
objective of the design is to minimize the peak transmission en-
ergy over symbol time slots, while, at the same time, satisfying
pre-specified symbol error probability (SEP) requirements of all the
users. This kind of design can reduce the energy spread over symbol
time. The resulting problem is a large-scale convex problem, and
we develop an efficient alternating direction method of multipliers
(ADMM) algorithm for the problem. Simulation results demon-
strate that our proposed algorithm significantly outperforms some
conventional linear beamforming schemes.

Index Terms— multiuser MISO, symbol-level precoding, peak
transmission energy, ADMM.

1. INTRODUCTION

In the multiuser multiple-input single-output (MISO) downlink
scenario, linear beamforming has been shown to be effective in im-
proving performance such as energy efficiency and the total through-
put [1–6]. The rationale of linear beamforming is to suppress the
multiuser interference by exploiting channel state information (CSI).
In such study, interference is often treated as harmful signals. In
the early 2010, a novel type of nonlinear precoding schemes, called
constructive interference, directional modulation or symbol-level
precoding (SLP), was proposed. SLP suggests that by exploiting
the symbol constellation information, interference can be actually
made use of to improve system performance. Numerous studies
have shown that SLP can provide significant performance gains
compared with linear beamforming schemes.

The initial idea of SLP was proposed in [7–9], where interfer-
ence is manipulated at the base station (BS) to push received signals
deeper into the correct detection region. A number of subsequent
research, which uses convex optimization-based SLP designs, ap-
peared later [10–16]. In those studies, SLP was designed to satisfy
certain signal-to-noise ratio (SNR) requirements. The form of SNR
is dependent on the symbol constellation structure, and the SNR ex-
pressions are totally different for quadrature amplitude modulation
(QAM) and M-ary phase shift keying (PSK) constellations. Recently
the idea of SLP has been extended to many other scenarios, such as
physical-layer security [17], large-scale antenna selection [18], en-
ergy harvesting [19] and robust precoding designs [20].

In this paper, we consider a symbol error probability (SEP)-
constrained SLP design under QAM constellations. The goal is to

minimize the peak energy of the transmit signals over symbol time.
By minimizing the peak energy, we try to reduce the transmission
energy in the instantaneous sense, not in the average sense. This
kind of design is helpful in reducing the energy spread over symbol
time. Our SEP-constrained SLP design is formulated as a large-scale
non-smooth convex optimization problem (as will be described, this
is because our design also optimizes the QAM constellation ranges
across symbol time, which can lead to considerable improved per-
formance). As the main contribution of this paper, we propose an
alternating direction method of multipliers (ADMM) algorithm to
solve the problem efficiently. By applying the ADMM algorithm, the
resulting large-scale problem is decoupled into per-time-slot prob-
lems, which allows us to solve them in a distributed manner. Sim-
ulation results demonstrate that our design outperforms traditional
linear beamforming in terms of peak transmission energy.

It should be mentioned that the formulation of the considered
SEP-constrained SLP design was derived in our previous work [21];
that work also unveils a hidden equivalence relation between SLP
and zero-forcing (ZF) beamforming. However, efficient optimiza-
tion schemes for the design were not studied in [21].

2. SYSTEM MODEL AND PROBLEM FORMULATION

The scenario we consider is as follows. A BS, equipped with N an-
tennas, tries to transmit K independent symbol streams to K single-
antenna users in a simultaneous and unicast fashion. The channels
from the BS to the users are assumed to be frequency-flat block faded
channels. The received signals of all users over one transmission
block is modeled as

yi,t = hHi xt + vi,t, i = 1, . . . ,K, t = 1, . . . , T, (1)

where yi,t ∈ C is the received signal of user i at symbol time t;
xt ∈ CN is the transmitted signal at symbol time t; hi ∈ CN
represents the MISO downlink channel from the BS to user i; T is
the transmission block length; vi,t ∼ CN (0, σ2

v) is additive circular
complex Gaussian noise.

Assuming perfect CSI at the BS, the task of SLP is to design the
transmit signals {xt}Tt=1 such that all the users receive their desired
symbols with certain quality of service, which we will specify later.
Let {si,t}Tt=1 be the desired symbol stream for user i. We assume
that {si,t}Tt=1 is drawn from a QAM constellation

Si = {sR + jsI | sR, sI ∈ {±1,±3, . . . ,±(2Li − 1)}},

where Li is a positive integer and the constellation size is 4L2
i . We

seek to achieve

hHi xt ≈ dRi <(si,t) + jdIi=(si,t), for all i, t, (2)
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where {dRi > 0}Ki=1 and {dIi > 0}Ki=1 represent the inter-point
spacings of the received QAM constellations along the real and
imaginary dimensions, respectively. See Fig. 1 for an illustration.
The inter-point spacings are designed by the BS, and each user can
acquire their corresponding inter-point spacings during the training
phase. With knowledge of the inter-point spacings, the users detect
their symbol streams by:

ŝi,t = deci
(
<(yi,t)/d

R
i + j · =(yi,t)/d

I
i

)
, (3)

where deci denotes the decision function corresponding to Si.

Fig. 1. Illustration of dRi and dIi for 16-QAM constellation

We are interested in an SEP-constrained SLP design formu-
lation, where we seek to minimize the peak transmission energy
among all the symbol times, and, at the same time, guarantee that
the SEP of each user is no greater than a pre-specified value. The
design is mathematically formulated as

min
{xt}Tt=1,d

R,dI
max

t=1,...,T
‖xt‖22

s.t. SEPi,t ≤ εi, i = 1, . . . ,K, t = 1, . . . , T,

dR ≥ 0,dI ≥ 0,

(4)

where dR = [ dR1 , . . . , d
R
K ]T , dI = [ dI1, . . . , d

I
K ]T , SEPi,t de-

notes the symbol error probability of si,t under (1)–(3), and εi’s are
pre-specified SEP requirements. Here, we optimize the inter-point
spacings {dR,dI} jointly with the transmit signals {xt}Tt=1 for the
whole transmission block. In other existing SLP works [13, 14] for
QAM constellations, to some extent they prefix the inter-point spac-
ings and consider optimizing the transmit signals on a per-symbol-
time basis.

The next job is to characterize the SEP in the constraints of Prob-
lem (4). By standard SEP analysis and following similar derivations
in our previous work [21], it can be shown that Problem (4) can be
handled by the following problem

min
{xt}Tt=1,d

R,dI
max

t=1,...,T
‖xt‖22

s.t.− dR + aRt ≤ <(Hxt − dR ◦ st) ≤ dR − cRt ,∀t,

− dI + aIt ≤ =(Hxt − dI ◦ st) ≤ dI − cIt , ∀t,

dR ≥ 0,dI ≥ 0.
(5)

Here, ◦ denotes the element-wise product, H = [ h1, . . . ,hK ]H ,
st = [ s1,t, . . . , sK,t ]T , aRt = [ aR1,t, . . . , a

R
K,t ]T , aIt =

[ aI1,t, . . . , a
I
K,t ]T , cRt = [ cR1,t, . . . , c

R
K,t ]T , cIt = [ cI1,t, . . . , c

I
K,t ]T ,

where

aRi,t =

 αi, |<(si,t)| < 2Li − 1
βi, <(si,t) = 2Li − 1
−∞, <(si,t) = −2Li + 1

cRi,t =

 αi, |<(si,t)| < 2Li − 1
−∞, <(si,t) = 2Li − 1
βi, <(si,t) = −2Li + 1

with

αi =
σv√

2
Q−1

(
1−
√

1− εi
2

)
, βi =

σv√
2
Q−1 (1−√1− εi

)
,

and the same result applies to aIi,t and cIi,t if we replace “<” with
“=”. By complex-to-real transformation, Problem (5) can be equiv-
alently expressed as

min
{x̄t∈R2N}Tt=1,d̄∈R2K

max
t=1,...,T

‖x̄t‖22

s.t.− d̄+ āt ≤ H̄x̄t − d̄ ◦ s̄t ≤ d̄− c̄t, ∀t,
d̄ ≥ 0,

(6)
where

H̄ =

[
<(H) −=(H)
=(H) <(H)

]
, d̄ =

[
dR

dI

]
, x̄t =

[
<(xt)
=(xt)

]
, (7)

āt =

[
aRt
aIt

]
, c̄t =

[
cRt
cIt

]
, s̄t =

[
<(st)
=(st)

]
. (8)

Problem (6) can be reformulated as a symbol-perturbed ZF form by
the result in [21], which is shown as follows.

Proposition 1 Suppose that H̄ has full row rank. The optimal solu-
tion x̄?t ’s to Problem (6) is given by

x̄?t = H̄†(d̄? ◦ s̄t + ū?t ), t = 1, . . . , T,

where H̄† = H̄T (H̄H̄T )−1 is the pseudo-inverse of H̄ , and
ū?1, . . . , ū

?
T , d̄

? is the optimal solution to

min
{ūt}Tt=1,d̄

max
t=1,...,T

(d̄ ◦ s̄t + ūt)
T R̄(d̄ ◦ s̄t + ūt)

s.t.− d̄+ āt ≤ ūt ≤ d̄− c̄t, ∀t,
d̄ ≥ 0,

(9)

with R̄ = (H̄H̄T )−1.

The advantage of the reformulation in (9) is that the constraints of
Problem (9) are simple bound constraints, which are easier to handle
than those of Problem (6). Also, it should be noted that Problem (9)
(and also Problem (6)) is convex.

3. PROPOSED ALGORITHM

In this section we develop a fast algorithm for the SEP-constrained
SLP design in (9). First, we should mention that the transmission
block length T is often large in practice, say, a few hundreds. Thus,
Problem (9) is a large-scale problem. If we call general-purpose
solvers, such as CVX, to solve Problem (9), it will take a long time
to complete the process. This motivates us to study how the problem
structure can be utilized to build a fast algorithm for Problem (9).
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3.1. Smooth Approximation and ADMM Algorithm

Our idea is to use ADMM to decouple the problem into per-symbol-
time subproblems. To do it, we first apply the log-sum-exponential
(LSE) approximation to the objective function of Problem (9), which
gives

min
{ūt}Tt=1,d̄

1
β

log
(∑T

t=1 e
β(d̄◦s̄t+ūt)T R̄(d̄◦s̄t+ūt)

)
s.t. − d̄+ āt ≤ ūt ≤ d̄− c̄t, t = 1, . . . , T,

d̄ ≥ 0,

(10)

where β is the smoothing parameter of the LSE approximation (the
approximation error vanishes as β →∞). Observe that it makes no
difference for the optimal solution of (10) if we remove log and 1/β
from the objective function. In order to apply ADMM, we split the
variable d̄ into d̄1 = . . . = d̄T = d̄; i.e., we rewrite Problem (10)
as

min
{ūt,d̄t}Tt=1,d̄

∑T
t=1 e

β(d̄t◦s̄t+ūt)T R̄(d̄t◦s̄t+ūt)

s.t. − d̄t + āt ≤ ūt ≤ d̄t − c̄t, t = 1, . . . , T,

d̄t ≥ 0, t = 1, . . . , T,

d̄1 = d̄2 = · · · = d̄T = d̄.

(11)

For ease of exposition, we reformulate the above problem as

min
{ūt,d̄t}Tt=1,d̄

∑T
t=1

{
eβ(d̄t◦s̄t+ūt)T R̄(d̄t◦s̄t+ūt) + ICt(ūt, d̄t)

}
s.t. d̄t = d̄, t = 1, . . . , T,

(12)
where

Ct , {(ūt, d̄t) | − d̄t + āt ≤ ūt ≤ d̄t − c̄t, d̄t ≥ 0},

and ICt(ūt, d̄t) denotes the indicator function of Ct, i.e.,

ICt(ūt, d̄t) =

{
0, if (ūt, d̄t) ∈ Ct

+∞, if (ūt, d̄t) /∈ Ct
(13)

The augmented Lagrangian function of Problem (12) is defined as

Lρ(Ū , D̄, d̄,Λ) =
T∑
t=1

{ eβ(d̄t◦s̄t+ūt)T R̄(d̄t◦s̄t+ūt) + ICt(ūt, d̄t)

− 〈λt, d̄− d̄t〉+
ρ

2
‖d̄− d̄t‖22 },

where Ū = [ū1, . . . , ūT ], D̄ = [d̄1, . . . , d̄T ], ρ > 0, and Λ =
[λ1, . . . ,λT ] denotes the dual variables. In accordance with the
ADMM literature [22], the ADMM iterations are

(Ū (k), D̄(k)) = arg min
Ū,D̄
Lρ(Ū , D̄, d̄(k−1),Λ(k−1)), (14)

d̄(k) = arg min
d̄
Lρ(Ū (k), D̄(k), d̄,Λ(k−1)), (15)

λ
(k)
t = λ

(k−1)
t − ρ(d̄(k) − d̄(k)

t ), t = 1, . . . , T. (16)

3.2. Algorithms for the ADMM-Decoupled Problems

Our remaining task is to derive efficient solutions to the ADMM-
decoupled problems in (14)–(15). For Problem (15), the update of
d̄(k) admits a closed-form solution

d̄(k) =
1

ρT

T∑
t=1

(ρd̄
(k)
t + λ

(k−1)
t ). (17)

For Problem (14), it can be decoupled as per-symbol-time problems

min
ūt,d̄t

f(ūt, d̄t)

s.t. − d̄t + āt ≤ ūt ≤ d̄t − c̄t,
d̄t ≥ 0,

(18)

for t = 1, . . . , T , where

f(ūt, d̄t) , eβ(d̄t◦s̄t+ūt)T R̄(d̄t◦s̄t+ūt) − 〈λt, d̄(k−1) − d̄t〉

+
ρ

2
‖d̄(k−1) − d̄t‖22.

The problems in (18) do not admit closed-form solutions in general,
but we can custom-derive a fast algorithm for them. Specifically,
we employ the accelerated proximal gradient (APG) method [23].
Let z̄t = (ūt, d̄t) for convenience. The APG iterations for (18) are
given by

v(k) = ΠCt

(
z̄

(k)
t − ηk∇f(z̄

(k)
t )
)
, (19)

z̄
(k+1)
t = v(k) +

tk − 1

tk+1

(
v(k) − v(k−1)

)
, (20)

where tk+1 =
1+
√

1+4t2
k

2
; ηk is the step size at iteration k and is de-

termined by backtracking line search; ΠX (x) , arg miny∈X ‖x−
y‖22 is defined as the projection of x onto X .

Fig. 2. Constraint of (ūi,t, d̄i,t) for all possible choices of s̄i,t.

As a key component for the APG method, we need to find an
efficient way to compute the projection ΠCt . As it turns out, the
projection ΠCt is very easy to compute. To describe, let (ũt, d̃t) =

ΠCt(ût, d̂t). It can be shown that for |s̄i,t| < 2Li − 1,

(ũi,t, d̃i,t) =


(0, αi), for |ûi,t| ≤ αi − d̂i,t,
(ûi,t − δ1, d̂i,t + δ1), for |d̂i,t − αi| ≤ ûi,t,
(ûi,t + δ2, d̂i,t + δ2), for |d̂i,t − αi| ≤ −ûi,t,
(ûi,t, d̂i,t), otherwise,

where δ1 = |d̂i,t − ûi,t − αi|/2 and δ2 = |d̂i,t + ûi,t − αi|/2; and
that for |s̄i,t| = 2Li − 1,

(ũi,t, d̃i,t) =


(κmax{βi, κûi,t}, 0) , for d̂i,t ≤ 0,

(ûi,t + κδ, d̂i,t + δ), for κûi,t + d̂i,t ≤ βi,
& d̂i,t ≥ 0,

(ûi,t, d̂i,t), otherwise,
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where κ = sign(s̄i,t) and δ = |d̂i,t + κûi,t − βi|/2. The idea
that leads to the above solution is to observe the constraint set under
different cases of s̄t; see Fig. 2.

4. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed al-
gorithm by Monte-Carlo simulations. In the simulation, we con-
sider the peak transmission energy maxt=1,...,T ‖xt‖22 as the per-
formance metric.

Also, to provide benchmarking for our proposed algorithm, we
consider two traditional linear precoding schemes: ZF and the opti-
mal linear beamforming (OLB). They are designed such that the SEP
requirements are satisfied; see [21] for details. We should note that
both are unable to perform minimization of the peak transmission
energy since they are not symbol-level precoding techniques.
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Fig. 3. Peak transmission energy w.r.t. N ; K = N .
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Fig. 4. Peak transmission energy w.r.t. ε; N = 32, K = 32.

The simulation settings are as follows. The power of noise is
σ2
v = 1; the transmission block length is T = 200; the chan-

nels are block Rayleigh fading channels, which means that the el-
ements hij of H follow CN (0, 1) in an i.i.d. manner; the sym-
bols si,t’s are drawn uniformly from 16-QAM constellation; we set
ε1 = · · · = εK = ε. The results to be shown are averages over
100 channel realizations. We should also specify the settings of
our proposed algorithm. The penalty parameter is ρ = 100; the
smoothing parameter β = 0.001; we initialize d̄(0) = [α;α] with
α = [α1, . . . , αK ]T , and Λ(0) = 0.

Fig. 3 shows the peak transmission energy for different num-
ber of transmit antennas. In this simulation scenario, we set K =
N . In the legend, “ZF” represents the zero-forcing beamforming
scheme; “OLB” stands for the optimal linear beamforming scheme;
“Proposed” means our proposed ADMM algorithm for the SEP-
constrained SLP design. We see from the figure that there is a large
performance gap between our proposed algorithm and the bench-
marked schemes, and the gap tends to increase with larger N and
K.

Fig. 4 compares the peak transmission energy performance of
all the considered precoding schemes when N = K = 32. We
evaluate the performance for different SEP requirements ε. We see
that our proposed SLP design significantly outperforms ZF and OLB
in terms of peak transmission energy. In particular, the performance
gain is about 10dB at the SEP level ε = 10−4.

5. CONCLUSIONS

To conclude, in this work we tackled an SEP-constrained SLP design
formulation for peak transmission energy minimization under gen-
eral QAM constellations. We devised an ADMM algorithm to solve
the design problem, which is of large scale. Simulation results show
that our proposed algorithm can achieve much better performance
than some existing linear precoding schemes.
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