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ABSTRACT

Although beamforming optimization problems in full-duplex
communication systems can be optimally solved with the
semidefinite relaxation (SDR) approach, its computational
complexity increases rapidly when the problem size in-
creases. In order to circumvent this issue, in this paper,
we propose an alternating direction of multiplier method
(ADMM) which minimizes the augmented Lagrangian of the
dual of the SDR and handles the inequality constraints with
the use of slack variables. The proposed ADMM is then
applied for optimizing the relay beamformer to maximize
the secrecy rate. Simulation results show that the proposed
ADMM performs as good as the SDR approach.

Index Terms—Alternating direction of multiplier method,
augmented Lagrangian, full-duplex, physical layer security

1. INTRODUCTION

Beamforming optimization problems in various wireless
systems, such as multi-user downlink [1], multiple-input-
multiple-output (MIMO) relay-based multipoint-to-multipoint
communications [2], full-duplex (FD) operation-based en-
ergy harvesting (EH) [3], [4], non-orthogonal multiple access
(NOMA) [5], and physical layer security systems [6] can be
approximated as semidefinite relaxation (SDR) problems [7]
which can be accurately solved with the off-the-shelf opti-
mization toolbox (e.g. CVX [8]). However, the SDR solution
is based on interior point (IP) methods whose complexity in-
creases drastically when the problem size increases. In order
to deal with this issue, several first order methods have been
proposed in the literature, for example, low-rank factoriza-
tion method [9], the block coordinate descent method [10],
the dual ascent approach [11], and the eigenvalue saddle
point transformation [12]. A common to all of these meth-
ods is that they employ simple mathematical operations per
iteration, such as matrix-vector multiplications, vector dot
products, and eigenvalue-eigenvector computations [13].
Another type of first-order method is the alternating di-
rection method of multipliers (ADMM), in which the opti-
mization variables are first partitioned into several blocks,
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and then the augmented Lagrangian function is minimized
with respect to each block by keeping all other blocks fixed
at each iteration. The application of ADMM has been stud-
ied in various optimization problems, such as non-linear
convex optimization [14], /;-norm minimization problems
of compressive sensing [15], and variational inequality prob-
lems [16]. Depending on how the positive semidefinite matrix
constraints are handled, first-order methods based on aug-
mented Lagrangian function have also been applied to solve
the semidefinite programming (SDP) problems [17], [18].

In [19], ADMM is applied within a dual augmented La-
grangian framework, i.e., the augmented Lagrangian function
for the dual of the SDP problem is minimized. More specif-
ically, at each iteration, this method first minimizes the dual
augmented Lagrangian function with respect to the dual vari-
ables associated with the linear equality constraints, and then
with respect to the variables associated with the inequality
constraints while fixing the other variables. After this, the
primal variables are updated. The advantage of this approach
is that it can handle SDPs with linear inequality constraints as
well as positivity constraint on each element of the positive
semidefinite matrix. This approach, which has been tested for
some specific problems (e.g., frequency assignment), leads
to an ADMM with three or more separable blocks of vari-
ables, for which theoretical convergence is not known. On the
other hand, a consensus-ADMM method has been proposed
in [20] to solve general quadratically constrained quadratic
problems (QCQPs) without requiring to approximate them as
SDR problems. In this method, however, the updates of one
of the blocks of variables of the ADMM requires numerical
approach in general.

In this paper, we propose an ADMM-based approach for
solving beamforming optimization problems (e.g., in full-
duplex communications of [4]- [6] ) that can be reformulated
as SDR problems and guarantee retrieval of rank-one optimal
solutions from the SDR solutions. Motivated from [19], an
augmented Lagrangian multiplier function of the dual of the
SDR is minimized. However, the inequality constraints are
handled by introducing a new set of slack variables. The
proposed method is then applied for solving beamforming
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optimization in a full-duplex relay-based secure communica-
tions, wherein the secrecy information rate is maximized.

The remainder of this paper is as follows. In Section 2,
the proposed ADMM is presented. Its application for relay
beamformer optimization in a physical layer security system
is presented in Section 3. Simulation results and conclusions
are provided in Section 4 and Section 5, respectively.

Notation: Matrices/vectors are denoted by upper/lower
case bold face letters; the superscripts (-)7, (-)#, and (-)~!
stand for transpose, Hermitian, and matrix inverse respec-
tively; the Euclidean/Frobenius norm of the vector/matrix is
denoted by || - ||; the trace and positive semidefiniteness of
a matrix X are denoted by tr(X) and X > 0, respectively.
Re {-} denotes the real part, and R™*™ and C"*"™ denote the
real and complex matrices of sizes n X n, respectively.

2. PROPOSED ADMM

Consider the following SDP problem in its standard form

min tr(CX)
X0
s.t. A(X) = b,

where C € C" ", X € C™ ", b € Ri”“, d € R,
A(X) = [tr(A1X), - - tr(A,,X)]7, and B(X) =
[tr(B1X), - tr(B,X)]". Letu = [uy, - ,uy]T beagx 1
vector of positive slack variables {u;}?_;. Then, (1) can be
expressed as
min tr(CX)
X0, {u; >0}7_,
s.t. A(X) = b,

B(X)—u=d. )

The Lagrangian multiplier function for (2) is expressed as

L(y,v,\,8) = tr((C+A*(y)+B*(v)-S)X) —
7'b —vid — (v + )T, 3)

where S = 0 and A > 0 are the dual variables associated
with the primal constraints X > 0 and u > 0, respectively,
whereas y € R™*! and v € R?*! are the dual variables
associated with the two equality constraints in (2). More-
over, A*()_’) = Z?il ngz and B* (V) = Zg:1 UiBZ' with
Y201, Um)T and v £ [v1, -+ ,vy]T. The optimal dual
and primal variables can be obtained by solving the following
optimization problem

G Gy FY S @
For a given u, the inner minimization w.r.t. X will be
unbounded if (C -+ A*(y)+ B*(v) —S) is not positive
semidefinite. As such, mingx vy £(y,V, A, S) is given by

1%11? —y'b —vTd - (v+2A)Tu
s.t. C+A"(y)+B*(v)—S=0. 5)

The constraint of (5) does not depend on u. For a given v
and A, the optimum u that minimizes the objective function
is given by u = max(0, v + A). Substituting this u into (5),
the resulting outer maximization can be expressed as
min y'b +vld + (v 4+ X)T max(0,v + X)
{y,v,x,8=0}
s.t. C+A(y)+B*(v)—S=0. (6)

Clearly, the optimum A is given by A = 0, without loss of
generality. Define b £ [b”,d”]T,y £ [y7,v1]", A(X) £
[AT(X), BT(X)]T, and A*(y) £ A*(y) + B*(v). Then, the
optimization problem (6) can be expressed as

. T T
b+y'P,,
sty Y PEY Eey
st. C+A(y)—S—0, A

where P, is a (m + q) X (m + ¢) matrix of ones and zeros

00 x (mt-q) P i
P .Here P,,isa

m

and can be expressed as P,,, =

g % (m+q) matrix whose ith row consists of all-zero elements
if y; <0, wheret =m+1,--- ,m+ g. This shows that P,
is a function of {yi}:iff 1. However, for some initial P,
the optimization problem (7) can be solved with the ADMM
approach. To this end, the augmented Lagrangian function

for this optimization problem can be expressed as

L£,(X,y,S)=y"b+y"P,y +tr((C+ A*(y) — S)X)

1
—||C+ A*(y) — S| 8
+llC+A(y) =S| ®)
In the ADMM, the following optimization problem is solved
i X,y,S).
Xgl,lsnzo ‘Cll ( 7y7 ) (9)

Starting with some X(¥) and S(¥), the joint optimization (9)
can be solved by solving the following three sub-problems

y(k+1) :argminyﬁﬂ (X(k),y7 S(k)) , (10)
g(k+1) _ argming, (L, (X(k),y(kﬂ)’ S) , (11)
X *+1) —x (k) 1 {C + A*(y(kH) _ S(k-s-l)} .(12)
2p
Let us assume By £ A, 1, --B, £ A,,, for notational
simplicity and define the following matrix

tr(A; Al Re (tr(A,,Af))
A= : :
tr(Am+qAll 1)

m—+q

Re (tr(A:lAH )

m+q

Proposition 1. For a given S%) and X¥), the solution of
miny L,, (X(k), y, S(k)) is given by

y*) = (A + 2qu)1{AR ((C - s<k>)H) -

i (=b = AX5)) } (13)
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where
Re (tr(A; (C — S®)H))

Re (tr(Apmyq (C — S®)H))

A ((C=8M)T) =

Proof. The proof involves solving the gradient of £, (X®) |y, S(*))

with respect to y and is skipped due to space constraint.  []

Proposition 2. For a given X*) and y 5V the solution of
mingy oL, (X®), yE+1) S) is given by
s = QA ., Q" (14)

where Ai‘,(k 11y IS the diagonal matrix of positive eigenvalues

of

1 H
(k+1) _ w (k) - * ([, (k+1)
A% XV 4 o (C + A (y )) ,

s5)

and Q is the corresponding matrix of eigenvectors.

Proof. The proof follows from solving the gradient of the
augmented Lagrangian with respect to S > 0 and is skipped
due to space constraint. O

Now the optimization problem (9) is solved with the fol-
lowing iterative algorithm (Algorithm 1).

Algorithm 1:

1: Initialize X*) and S*), the maximum number of

iterations (/V,;) and/or convergence accuracy €, and p.

Obtain y **1 from (13).

Obtain S**1 from (14) and (15).
Update X *+1) ysing (12)

Update p

If {y* Y = 0}t
Go to step 2 until convergence.

R A A

In Algorithm 1, the following stopping criterion and

update procedure for p is employed [21]. Let T;(j;;m

[AX®) = bl and r{f), = ||C+ A*(y*+1) — SE+D] | be
the primal and dual residuals in the kth iteration. The algo-
rithm is considered to be converged if max(rgigm, r((l’;)a D) <€
where € is chosen depending on the application problem. In
order to improve the convergence as well as make p inde-
pendent of initial choice, we employ the following rule for

updating p [21]:

w o (K k
i1 T l(i()k) if Tj(ar)im > pr((iu)al’
RS S G
pk) otherwise,

where p > 1, 7% > 1, and 7¢ > 1 are the parameters having
typical values as p = 10 and 7% = 79 = 2.

set ith row of P,,, to all-zeros.

H:r
M antennas m Mt antennas
@ hsr @ hra @

he \
hse

Fig. 1. A FD relay system with an eavesdropper.

3. APPLICATION TO PHYSICAL LAYER SECURITY

In this section, we apply the proposed ADMM to optimize
relay beamformer in a communication system consisting of a
source S, a FD relay R, a legitimate receiver D, and an eaves-
dropper E, as shown in Fig. 1. The relay is equipped with
M antennas (M transmit antennas and M, = M — M, re-
ceive antennas) and employs decode-and-forward protocol,
whereas all other nodes are equipped with a single antenna.
It is assumed that the relay estimates the S — R and R — D
channels during the training phase. Similar to most literature,
(see e.g. [22] and the references therein) the eavesdropper is
assumed to be an active user in the legitimate network, and
hence the relay can estimate the E — R channel which is used
as an estimate for the R — E channel by channel reciprocity.
We assume that all channels are flat fading and the channel
estimates are accurate enough.

The S —R,R — D, S — E, and R — E channels are, respec-
tively, represented by h,, € CMrx! h,;, € CM:X1 b, € C
and h,, € CM:*1 The transmit power of the source is de-
noted by P,, whereas H,, € CM»*M: denotes the residual
loop-interference (LI) channel at the relay. The relay ap-
plies a linear beamformer to the received signal to estimate
the transmitted signal and then applies a transmit beamformer
w; € CMex1 (g the estimated signal. On the other hand, due
to full-duplex operation mode and its non-zero processing de-
lay, the S — E and R — E channels form an inter-symbol inter-
ference channel. Assuming a processing delay equivalent to
one symbol and a processing length of two blocks, the infor-
mation secrecy rate is derived in [6]. The objective is to max-
imize the secrecy rate w.r.t. the relay’s receive and transmit
beamformers. After substituting the optimum receive beam-
former in terms of w; € CM+*1 the secrecy rate maximiza-
tion problem can be expressed as in (17) (shown on top of the
next page) [6], where ¢ = 1+ py|hse|?, B = pshi hl p; =
%,pg = %,pg = %,pzl = %, and ps = % Here 02, 02,
and o2 denote respective noise powers at the relay, destina-
tion, and eavesdropper. P, is the transmit power of the relay.
After introducing an auxiliary variable ¢ and applying matrix
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[lwe||=1

inversion, the optimization probltem (17) can be expressed as

max y (18a)
{t=1,[lw¢||=1}

(2 + wHBw,)?
WfIthsrthth
1+ powHHEH,, W,

t—-1)

P3

s.t.

< q(t),(18b)

Hyp*x 1.7
< Wy hrdhrdwtv

(18¢c)

2
where ¢(t) £ % — —~(t—1). For a given t, introducing

W; 2 w,w/! and relaxing the equality constraint W, =
wywil by W, = wy,w!l, (18) can be expressed as
I{}l\}fl tr (W,B), (19a)
s.t. tr (WeHEL [p2g()I — hy h ] Hy, ) > —q(t), (19b)
-1

P3
tr(wt) = 17 Wt = 07

where B = h*_h’, . In this problem, rank-one optimum so-

lution can be always recovered from the SDR solution [4].

Thus, comparing (19) with the standard SDP (1), we obtain
X = Wta C = B7 Al = I,A*(S’) = g117 b= [1]’
B, = H/L [p2¢(t)I — h,,h | H,,, By = hi/h],,
B*(v) = Ule [p2Q(t)I - hsrhg] H,, + UZh:thda

d= [_Q(t)v T

t— 1} T
p3 '

A line-search w.r.t. ¢ is then performed to solve the joint opti-

mization [6].

< tr (Wihizhly) (19¢)

(19d)

(20)

9.5

9l

N Fd
0 © &
T
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Fig. 2. Comparison between the proposed ADMM and SDR.
4. SIMULATION RESULTS

In this section, we compare the performance of the proposed
ADMM with the SDR approach for the considered appli-
cation problem. Throughout all simulations of the ADMM

1 .
max 10g2{ (1 + min{plthr(ngthwag + I)*lhsr, p3|hTwat|2}) ~3 log, (02 + wfIBwt) }, a7

method, we choose p = 10, 7% = 74 = 2, set initial value of
1to 10, Nj; t02000 and e to 5 x 1073, The S—R,R—D, R—E,
and S — E channel distances are set to 40m, 40m, 50m, and
200m, respectively. We set noise powers at the relay, destina-
tion, and eavesdropper to —80 dBm, the pathloss exponent to
3, the variance of the residual loop-interference to 30 dBm,
and choose M = 8 and P, = P,.

The performance of the proposed ADMM and SDR meth-
ods is shown in Fig. 2 for different M;. It can be observed
from Fig. 2 that the performance of the proposed ADMM
is similar to that of the SDR method. Note that we skip all
channel realizations for which CVX finds the SDR problem
infeasible, since the corresponding w, is not available.

T T T T T T T T T
——Dual residue
4r —— Primal residue |

5

~

\ogm(Dua\ residue)
\ogm(anaI residue)

L L L L L L L L L

-5

100 200 300 400 500 600 700 800 900 1000
Number of iterations

Fig. 3. Convergence for the proposed ADMM.

In Fig. 3, the convergence behavior of the ADMM algo-
rithm is shown, where we take M; = 6, ¢ = 5 x 1073, and
Ps; = 0 dBm. As the number of iterations increase, both pri-
mal and dual residues decrease and both converge to a value
less than 5 x 103 in about 200 iterations.

5. CONCLUSION

In this paper, we proposed an alternating direction of multi-
pliers method (ADMM) to solve beamforming optimization
problems that can be reformulated as semidefinite relaxation
(SDR) problems and guarantee rank-one solutions. The pro-
posed ADMM minimizes the augmented Lagrangian func-
tion of the dual of the SDR and handles inequality constraints
through slack variables. The algorithm is then applied to solve
the relay beamforming optimization problem, whereein the
objective is to maximize the secrecy rate. Simulation results
show that the proposed ADMM provides performance similar
to that of the standard SDR method. Future works include the-
oretical analysis of the convergence of the proposed ADMM.
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