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ABSTRACT
We consider the problem of finding optimal resource allocations subject
to system constraints in a generic class of problems in wireless commu-
nications. These problems are inherently challenging due to functional
optimization and potential non-convexities. However, these problems
can be observed to take the form of a regression problem, although one
in which the statistical loss function appears as a constraint. This mo-
tivates the use of machine learning model parameterizations. To apply
gradient-based solution algorithms that do not require model knowledge,
we convert the constrained optimization problem to an unconstrained
one using Lagrangian duality. Despite the non-convexity in the problem,
we formally show that the sub-optimality of the dual domain problem is
small when the learning parameterization is sufficiently dense. We then
present a primal-dual learning algorithm that looks for solutions to the
dual problem using model-free gradient estimates. In a numerical sim-
ulation, we demonstrate the near-optimality of the proposed model-free
algorithm using a neural network parametrization for a capacity maxi-
mization problem.

Index Terms— wireless communications, leaning, resource alloca-
tion, neural networks, duality gap

1. INTRODUCTION

In the design of optimal wireless systems, the goal is to allocate avail-
able resources—such as power, bandwidth, data rates, etc.—to meet sys-
tem requirements and optimize with respect to some utility. Because the
wireless channel is subject to random fading, we are generally inter-
ested in optimizing with respect to long term or average performance.
This is due to the fact that that instantaneous channel conditions vary
too quickly and unpredictably for users to observe instantaneous perfor-
mance, and thus average performance is a more useful measure. Prob-
lems of this form range from the simple power allocation in wireless
fading channels, to the optimization of frequency division multiplex-
ing [1], beamforming [2, 3], random access [4, 5], and wireless control
systems [6–8].

While these problems may be easily formulated as a mathematical
optimization problem, finding solutions to these problems is far from
straightforward. Because we search for resource allocation functions,
the dimensionality of these problems is a significant challenge. In addi-
tion, performance functions of interest are often, in practice, non-convex.
However, much work in this area has focused on solving this problem in
the dual domain. A key property that enables this solution is the lack
of duality gap, which allows dual operation without loss of optimality.
This has been shown to hold for a generic class of wireless resource
allocation problems under mild technical conditions despite the pres-
ence of a non-convex constraint [9]. This motivates methods that seek
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to find solutions in the dual domain, which make the problem easier
to solve, though not necessarily completely tractable without resorting
to heuristics [6–8, 10–14]. All such methods will additionally require
model knowledge, which is not always available in practice.

The fundamental challenge in finding solutions to resource alloca-
tion problems has motivated the use of machine learning techniques. In
some cases, it may be possible to obtain a finite collection of optimal
solutions given a set of sampled channel conditions, which allows for
the application of traditional supervised learning methods to find a more
generic solution. Such cases include those in which a training set can be
constructed using exact solutions [15,16] or constructed using heuristic-
based approximations [17–19]. An alternative to supervised learning is
instead to train the learning model directly with respect to the utility of
interest, as is often done in, e.g., reinforcement learning problems [20].
This learning approach has been taken in simpler unconstrained prob-
lems in wireless optimization [21–23], where the reinforcement learn-
ing solution framework can be applied directly. However, in the more
generic class of wireless problems that are constrained—due to balanc-
ing of capacity, power consumption, channel access, and interference—
there is no clear way in which to solve such problems without the need
of a training set.

In this paper, we consider a learning-based approach in which
we parameterize the resource allocation function directly within the
constrained optimization problem (Section 2). To apply model-free
gradient-based machine learning algorithms to this problem, we must
convert the constrained problem to an unconstrained problem. We pro-
pose the use of Lagrangian duality to derive an unconstrained problem in
the dual domain. We demonstrate formally that, despite non-convexities,
the duality gap of learning problems in wireless optimization is small
if the learning parametrization is nearly universal (Section 3). This
set of nearly universal parameterizations include reproducing kernel
Hilbert spaces and, most famously, deep neural networks. We intro-
duce a model-free learning algorithm in which gradients are estimated
by sampling the model functions and wireless channel (Section 3.1).
We conclude with numerical experiments on a standard wireless re-
source allocation problem, in which we demonstrate the near-optimal
performance of the proposed dual learning approach using deep neural
networks (Section 4).

2. OPTIMAL RESOURCE ALLOCATION

Let h ∈ H ⊆ Rn
+ be a random variable representing a collection of n

stationary wireless fading channels drawn according to the probability
distribution m(h). We define resource allocation function p(h) ∈ Rm

and a performance function f : Rn × Rm → Ru. Because channel
states h vary quickly and randomly, we are interested in the performance
over an ergodic average x = E

[
f
(
p(h),h

)]
∈ Ru. Optimal wireless

design involves finding the instantaneous resource allocation p(h) that
optimizes a utility g0 : Ru → R of the average performance x, subject to
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constraints represented by the vector function g : Ru → Rr . We further
consider the convex sets X ⊆ Ru and P ⊆ M, whereM is the set of
functions integrable with respect to m(h), that define feasible points for
x and p(h), respectively. The optimal resource allocation problem in
wireless communication systems is then formulated as

P ∗ := max
p(h),x

g0(x),

s. t. x ≤ E
[
f
(
p(h),h

)]
,

g(x) ≥ 0, x ∈ X , p ∈ P. (1)

Observe we relax the definition x = E
[
f
(
p(h),h

)]
to an inequality

constraint in (1). The functions g0(x) and g(x) are assumed to be
concave and the set X is assumed to be convex. However, the func-
tion f(·,h) is not assumed convex or concave and the set P is not as-
sumed to be convex either. The performance functions often appear-
ing in wireless systems are indeed often non-convex, such as a capacity
function over an interference channel [9]. As is common in practical sit-
uations, we do not have complete knowledge of the functions g0,g, and
f , but can only sample that at given operating points.

Although we may use the formulation in (1) to characterize the op-
timal resource allocation in various wireless communication problems,
the optimization problem itself is generally very challenging to solve.
Because we are optimizing over a set of infinite dimensional variables
p(h) and over a non-convex feasible set, finding optimal solutions may
be very hard if not intractable. In select cases of the optimal resource al-
location problem, heuristic methods have been developed that may find
approximate solutions. Alternately, there are a number of optimization
methods that exploit that fact that, despite the non-convexity of the con-
straint in (1), it is known to exhibit null duality gap when the channel
distributions m(h) are non-atomic [9]. This property allows for solu-
tions to be found in the Lagrangian dual problem. Both the heuristic and
standard dual methods, however, are only available for certain instances
of (1) and, more importantly, require either significant domain or model
knowledge to develop.

In this work, we make a key observation about the structure of the
optimal resource allocation problem, namely that it takes the form of a
learning problem. Indeed, the instantaneous allocation function p(h)
can be viewed as a regression function which predicts optimal resource
allocations p given a set of data h. Because we optimize over the ex-
pected performance over the statistics of the data—in this case the fading
channel conditions—this takes the form of a regression problem com-
mon in machine learning. A fundamental difference, however, is that
the regression loss function E

[
f
(
p(h),h

)]
appears as a constraint in

(1), rather than the objective as is commonly seen in traditional learning
problems.

This insight motivates a learning based solution to (1), in particular
one in which we replace the generic allocation function p(h) with a
given model φ parameterized by θ ∈ Rq , i.e.

p(h) = φ(h,θ). (2)

If we now define the set Θ := {θ | φ(h,θ) ∈ P}, the optimization
problem in (1) becomes one in which the optimization is over x and θ

P ∗φ := max
θ,x

g0(x),

s. t. x ≤ E
[
f
(
φ(h,θ),h

)]
,

g(x) ≥ 0, x ∈ X , θ ∈ Θ. (3)

In (3), we eliminate the challenge of functional learning by optimizing
instead over a finite dimensional variable θ (in addition to x). Because
we restrict our search space to a smaller set of functions that can be
parameterized by φ, P ∗φ will by construction by sub-optimal with re-
spect to P ∗. Naturally, we should expect that the magnitude of this
sub-optimality be related to the degree to which functions of the form

φ(h,θ) can approximate the optimal function p∗(h). In this work, we
focus our attention on a widely-used class of parameterizations we define
as near-universal, which are able to model any function in P to within a
stated accuracy. We present this formally in the following definition.

Definition 1 A parameterization φ(h,θ) is an ε-universal parameteri-
zation of functions in P if, for some ε > 0, there exists for any p ∈ P a
parameter θ ∈ Θ such that

E ‖p(h)− φ(h,θ)‖∞ ≤ ε. (4)

A number of popular machine learning models are known to exhibit the
universality property in Definition 1, such as radial basis function net-
works (RBFNs) [24], reproducing kernel Hilbert spaces (RKHS) [25],
and the widely explored deep neural networks (DNNs) [26].

Despite the dimensionality reduction we achieve through the learn-
ing parameterization in (3), the problem remains unsolvable in its current
form due the existence of constraints. Standard machine learning prob-
lems are unconstrained problems, and so the algorithms used to solve
them cannot be applied directly to the more complex structure of the ma-
chine learning problem that appears in the wireless resource allocation
problem. A naive approach to remove the constraints is to add additional
terms to the objective function that penalize violation of the constraints.
As the resulting problem will seek a solution to strikes some balance
between maximizing the utility g(x) and avoiding constraint violation,
this generic penalty approach will not accurately characterize the opti-
mal solution P ∗φ. To address this issue, we consider the techniques of
Lagrangian duality to derive an appropriate unconstrained problem.

3. DUALITY OF LEARNING PROBLEM

Lagrangian duality provides a common approach towards converting a
constrained optimization problem into an unconstrained optimization
problem. To derive the so-called dual problem, introduce the nonneg-
ative dual variables λ ∈ Rp

+ and µ ∈ Rr
+, respectively associated with

the constraints x ≤ E
[
f
(
φ(h,θ),h

)]
and g(x) ≤ 0. We first form

a Lagrangian function of (3) as sum of objective and constraint values
weighted by their respective dual variables

Lφ(θ,x,λ,µ) := g0(x) + µTg(x) (5)

+ λT
(
E
[
f
(
φ(h,θ),h

)]
− x

)
.

The dual function Dφ(λ,µ) is then a function of the dual variables and
is defined as

Dφ(λ,µ) := max
θ∈Θ,x∈X

Lφ(θ,x,λ,µ). (6)

It is widely known that if λ ≥ 0 and µ ≥ 0 we have Dφ(λ,µ) ≥ P ∗φ–
see, e.g. [27]. This motivates definition of the dual problem in which we
search for the dual variables that minimize Dφ(λ,µ), i.e.

D∗φ := min
λ,µ≥0

Dφ(λ,µ). (7)

The resulting dual problem is then an unconstrained optimization
problem of finite dimensional variables, or at least only constrained by
simple set constraints. This resulting problem in (7) can then be viewed
as a standard unconstrained statistical learning problem of both the dual
variables µ and λ and, indirectly, the primal variables θ and x. Thus,
standard gradient based machine learning algorithms may be used di-
rectly on (7). Among such methods include well known model-free
methods which search for solutions to (7) without requiring knowledge
of the functions present in (3). We develop such a learning algorithm
in Section 3.1 of this paper. Before proceeding, however, we look at
the central question of how well the dual problem in (7) represents the
constrained problem on interest in (1).
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It is known that convex optimization problems exhibit an important
quality known as strong duality, which refers to the fact that the mini-
mum dual value is equivalent to the optimal primal value [27]. However,
this property is far from given in the optimal resource allocation problem
in (3) due to the non-convexities. In order to properly motivate learning
in the dual domain for this problem, it is necessary to characterize this
gap in optimalities.

In this paper, we demonstrate a key result in which, despite the
non-convexities in (3), the structure of the problem and the choice of
parametrization function φ(h,θ) induces a dual problem whose optimal
is close to that of (1). In particular, this result builds off of the strong du-
ality property the original problem in (1) and the nature of near universal
functions in the sense of Definition 1. In proving this result we need to
introduce some restrictions to the problem formulation that we state as
assumptions next.

Assumption 1 The probability distribution m(h) is nonatomic in H.
I.e., for any set E ⊆ H of nonzero probability there exists a nonzero
probability strict subset E ′ ⊂ E of lower probability, 0 < Eh(I (E ′)) <
Eh(I (E)).

Assumption 2 Slater’s condition hold for the unparameterized problem
in (1) and for the parametrized problem in (3). In particular, there exists
variables x0 and p0(h) and a strictly positive scalar constant s > 0
such that

E
[
f
(
p0(h),h

)]
− x0 ≥ s1. (8)

Assumption 3 The objective utility function g0(x) is monotonically
non-decreasing in each component. I.e., for any x ≤ x′ it holds
g0(x) ≤ g0(x′).

Assumption 4 The expected performance function E
[
f
(
p(h),h

)]
is

expectation-wise Lipschitz on p(h) for all fading realizations h. Specif-
ically, for any pair of resource allocations p1(h) ∈ P and p2(h) ∈ P
there is a constant L such that

E‖f(p1(h),h)− f(p2(h),h)‖∞ ≤ LE‖p1(h)− p2(h)‖1. (9)

Assumption 1 states that there are no points of strictly positive prob-
ability in the distributions m(h), or in other words that the fading state
h take values in a dense set with a non-atomic probability density. As-
sumption 2 simply states that there exist points that are strictly feasible
in (1), which is a reasonable assumption in practice. Assumption 3 is
restricts utilities g0(x) to those that are monotonically non-decreasing.
Assumption 4 is a Lipschitz continuity restriction on each of the dimen-
sions of the expectation of the constraint function f , which we point out
this is weaker than general Lipschitz continuity and satisfied by many
wireless resource allocation problems, including those with discrete al-
location variables.

Assumptions 1-3 collectively imply that the duality gap of the orig-
inal unparameterized problem in (1) is known to be null – see [9] for
details on this result. Given further satisfaction of Assumption 4 and us-
ing a parametrization that is nearly universal in the sense of Definition 1,
such as DNNs, we show that the parametrization gap, or sub-optimality,
|D∗φ − P ∗| that results from the transformation of (1) to the parameter-
ized dual problem in (7) is small as we formally state next.

Theorem 1 Consider the parameterized resource allocation problem in
(3) and its Lagrangian dual in (7) in which the parametrization φ is ε-
universal in the sense of Definition 1. If Assumptions 1 - 4 hold, then the
dual value D∗φ is bounded by

P ∗ − ‖λ∗‖1Lε ≤ D∗φ ≤ P ∗, (10)

where the multiplier norm ‖λ∗‖1 can be bounded as

‖λ∗‖1 ≤
P ∗ − g0(x0)

s
<∞, (11)

in which x0 is the strictly feasible point of Assumption 2.

The proof for this result can be found in [28]. Theorem 1 estab-
lishes an upper and lower bound on the optimal dual value in (7) relative
to the optimal primal of the original problem in (1) and the accuracy
ε that characterized the near-universality of function parameterization
φ(h,θ). Deep neural networks, in particular, fit well into this frame-
work, as they are known to universally approximate any function for any
arbitrary ε given sufficiently length of the layers [26]. The optimal dual
value is not greater than P ∗ and, more importantly, not worse than a bias
on the order of ε. These bounds then formalize the notion that we may
perform algorithms to solve the unconstrained, parameterized dual prob-
lem in (7) in place of the more complex, constrained problem in (3), for
which no algorithms are immediately apparent.

3.1. Learning algorithm

To solve the unconstrained dual problem in problem (7), we propose a
model-free, primal-dual optimization algorithm. A primal-dual method
is one in which we iteratively perform gradient-based updates on both
the primal θ and x, and dual variables λ and µ of the Lagrangian func-
tion in (5) to find a local stationary point. Consider that we over itera-
tions indexed by k, we successively update values of the primal and dual
variables until we reach a point of convergence. At each index k of the
primal-dual method, we update the current iterates by adding the corre-
sponding partial gradients of the Lagrangian in (5), i.e. ∇θL,∇xL, and
projecting to the corresponding feasible set. However, because we do not
assume that we have explicit forms available for the functions or channel
distributions in (1), we cannot evaluate such partial gradients directly. As
is commonly done in model-free machine learning methods, such as the
case in, e.g., reinforcement learning, we may perform stochastic updates
using model-free estimates of the gradients, denoted as ∇̂g0(x), ∇̂g(x)

and ∇̂θEhf(φ(h,θ)). Such estimates can be constructed by sampling
the functions g0, f ,g at or near the location of the current iterates. We
may then estimate the partial gradients using the observed outputs, which
we denote with hats as in, e.g. ĝ(xk). A model-free gradient update is
performed on the primal variables as

θk+1 = PΘ

[
θk + γθ,k∇̂θEhf(φ(h,θk),h)λk

]
, (12)

xk+1 = PX
[
xk + γx,k(∇̂g0(x) + ∇̂g(xk)µk − xk)

]
. (13)

where we introduce γθ,k, γx,k > 0 as scalar step sizes. We likewise
update the dual iterates λk,µk at time k by performing the model-free
gradient updates

λk+1 =
[
λk − γλ,k

(
f̂(φ(ĥk,θk+1), ĥk)− xk+1

)]
+

(14)

µk+1 = [µk − γµ,kĝ(xk+1)]+ . (15)

with associated step sizes γλ,k,γµ,k > 0. The gradient primal-dual
updates in (12)-(15) successively move the primal and dual variables
towards maximum and minimum points of the Lagrangian function, re-
spectively.

We note that model-free gradient estimation is a well-studied topic
in machine learning algorithms. While we not discuss the details of such
estimation techniques here, we point out the well-known approaches,
namely finite difference methods and the policy gradient method [29].
The former approach is a simplistic approach towards estimating gra-
dients that randomly samples points around the current iterate to con-
struct a finite-difference approximation of a derivative. This method is
attractive in its simplicity but may suffer from variance or sampling com-
plexity. The latter method, commonly used in model-free reinforcement
learning, is particularly useful in estimating gradient of a policy func-
tion, such as E

[
f
(
p(h),h

)]
, by using a known distribution function to

approximate the derivative. Both such approaches fit naturally into the
model-free algorithm we present in (12)-(15).
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Fig. 1: Convergence of (left) objective function value, (center) constraint value, and (right) dual parameter for simple capacity problem in (16) using
proposed DNN method with policy gradients and unparameterized solution. The DNN parameterization obtains near-optimal performance relative to
the exact solution.

4. SIMULATION RESULTS

We perform numerical simulations of the proposed dual-learning based
approach for learning in wireless systems in a representative problem
that takes the form in (1). In particular, consider the problem of maxi-
mizing aggregate capacity over a set of dedicated AWGN wireless fading
channels. A set of users are each given channels to communicate, and
we wish to allocate power between users within a total expected power
budget pmax. In this case, the capacity over the channel can be modeled
as log(1 + SNRi), where SNRi := hipi(hi)/vi is the signal-to-noise
ratio experienced by user i and vi > 0 is the noise variance. Likewise,
hi is the fading channel conditions experienced by user i and pi(hi) is
the power allocation. The capacity function for the ith user is given by
f i(pi(hi), hi) := log(1 + hipi(hi)). We are interested in maximizing
the weighted aggregate throughput across all users, with user i weighted
by wi ≥ 0. The total capacity problem can be written as

P ∗φ := max
θ,x

m∑
i=1

wixi (16)

s. t. xi ≤ Ehi

[
log(1 + hiφi(hi,θ)/vi)

]
, ∀i

Eh

[
m∑
i=1

φi(hi,θ)

]
≤ pmax.

Because we do not consider interference in (16), the problem as is may
be solved exactly without any learning parametrization using a simple
dual stochastic gradient method [30]. Given this, we may use the ex-
act solution as a baseline with which to compare the solution obtained
through the dual learning method proposed in this paper, which we stress
does not assume any knowledge of the capacity function in (16).

To parameterize our resource allocation function, we use the popu-
lar universal parameterization known as deep neural networks (DNNs).
Such models are complex and dense models that, in addition to the the-
oretical universality, have been observed in practice to accurately model
many different types of functions. The architecture consists of of L lay-
ers, each of which consisting of a linear operation Wl followed by a
point-wise nonlinear activation function σl. Common choices of activa-
tion functions σl include a sigmoid function, a rectifier function (com-
monly referred to as ReLu), as well as a smooth approximation to the
rectifier known as softplus. For the parameterized resource allocation
problem in (3), the policy φ(h,θ) can be defined through by an L-layer
DNN as

φ(h,θ) := σL(WL(σL−1(WL−1(. . . (σ1(W1h)))))), (17)

where θ ∈ Rq contains the entries of {Wl}Ll=1.
For the simulations performed, we employ a stochastic policy and

implement the policy gradient method approach in [29]. To implement

policy gradient for the gradient estimation, we use a truncated Gaus-
sian distribution from which to draw resource allocations. The truncated
Gaussian distribution has fixed support on the domain [0, pmax]. The
output layer of the DNN φ(h,θ) ∈ R2m is the set of m means and
standard deviations to specify the respective truncated Gaussian distri-
butions, i.e. φ(h,θ) := [µ1;σ1;µ2;σ2; . . . ;µm;σm]. Furthermore, to
represent policies that are bounded on the support interval, the output of
the last layer is fed into a scaled sigmoid function such that the mean lies
in the area of support and the variance is no more than the square root of
the support region. In the following experiments, this interval is [0, 10].

For updating the primal and dual variables, we use a batch size of
32. The primal dual method is performed with an exponentially de-
caying step size for dual updates and the ADAM optimizer [31] for
the DNN parameter update. Both updates start with a learning rate of
0.0005, while random channel conditions are generated with an expo-
nential distribution. For each user, their channel gain hi is provided
as input to a single-input-single-output (SISO) DNN, which outputs a
power allocation pi(hi). Each DNN is constructed with L = 2 hidden
layers, of size 8 and 4, respectively, each employing ReLU activation,
i.e. σ(z) = [z]+.

The results of a simple experiment with m = 20 users with unit
weight and variance wi = vi = 1 is shown in Figure 1. We observe in
the left figure that the the total capacity achieved by the DNN dual learn-
ing method converges a close to that obtained by the unparameterized
method. Likewise, in the center figure, we plot the value of the con-
straint function, whose convergence to 0 implies that the solution found
by our method is indeed feasible. These results support the conclusion
made in Theorem 1, namely that learning in the dual domain incurs only
a small loss in optimality with respect the unparameterized problem.

5. CONCLUSION

In this paper, we study the problem of finding optimal resource alloca-
tion policies in a wide range of wireless communications problems. We
make an observation that the resource allocation problem takes a form of
a regression problem common in machine learning, which motivates the
use of a learning model parameterization. Due to the appearance of the
statistical loss in the constraints, there is no clear way to apply model-
free learning methods to find solutions to the optimization problem. We
demonstrate, however, that the solution to the unconstrained Lagrangian
dual problem is close to the original solution, despite the non-convexities
of the performance function and learning model parametrization. This
closeness is proportional to the accuracy with which the parameteriza-
tion can approximate arbitrary functions. We further present a learning
algorithm to find solutions to the dual problem using model-free gradi-
ent estimates. We demonstrate in a numerical simulation that, by using a
neural network parametrization of the allocation function, we find near-
optimal solutions in a capacity maximization problem.
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