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ABSTRACT
The problem of beam alignment for millimeter wave (mm-
Wave) communications is studied in this paper. We show
that, by exploiting the sparse scattering nature of mmWave
channels, the beam alignment problem can be formulated as
a sparse encoding and phaseless decoding problem, which in-
volves finding a sparse sensing matrix and an efficient recov-
ery algorithm to recover the support and magnitude of the s-
parse signal from compressive phaseless measurements. We
develop a general function-Code (GF-Code) algorithm for s-
parse encoding and phaseless decoding. Simulation results
are provided to corroborate the effectiveness of the proposed
GF-Code method.

Index Terms— mmWave communications, beam align-
ment, sparse encoding and phaseless decoding

1. INTRODUCTION

Millimeter wave (mmWave) communication has the poten-
tial to offer gigabits-per-second communication data rates by
exploiting the large bandwidth available at mmWave frequen-
cies [1–3]. Nevertheless, communication at the mmWave
frequency bands suffers from high attenuation and signal
absorption [4]. To address this issue, large antenna arrays
should be used to provide sufficient beamforming gain for
mmWave communications [5]. Due to the narrow beam of
the antenna array, beamforming training is required to find
the best beamformer-combiner pair that gives the highest
beamforming gain. A natural approach is to exhaustively
search for all possible beam pairs to identify the best beam
alignment. This exhaustive search has a sample complexity
of O(N2) (N denotes the number of possible beam direc-
tions) and usually takes a long time (up to several seconds)
to converge. The IEEE 802.11ad standard [6] employs an
exhaustive search at the receiver, with the transmitter adopt-
ing a quasi-omnidirectional beam pattern. This process is
then reversed to have the transmitter sequentially scan the
entire space while the receiver uses a quasi-omnidirectional
beam shape. This protocol still incurs a considerable delay
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(hundreds of milliseconds) in practice [7]. To further reduce
the training time, adaptive beam alignment algorithms [8–11]
and compressed sensing-based approaches [12–20] were pro-
posed recently. The adaptive beam alignment requires to
adaptively choose a subcodebook at each stage based on the
output of earlier stages. A drawback of this scheme is that
the base station has to interact with each user individually,
which may not be feasible at the initial channel acquisition
stage. Compressed sensing-based methods usually involve
a computational complexity that might be too excessive for
practical systems. In addition, compressed sensing methods
require the knowledge of the phase of the measurements,
which may not be available in practice.

In this paper, by exploiting the sparse scattering nature of
mmWave channels, we show that the beam alignment prob-
lem can be formulated as a sparse encoding and phaseless
decoding problem. We propose a general function-Code (GF-
Code) algorithm for sparse encoding and phaseless decod-
ing. The proposed algorithm is computationally efficient and
noise-robust. Also, it can recover the support and magnitude
information of a K-sparse signal with a sample complexity
of O(K2), thus providing a competitive solution for practical
mmWave beam alignment systems.

2. SYSTEM MODEL

Consider a mmWave communication system which consist-
s of a receiver (user) and a transmitter (base station). We
assume that a hybrid analog and digital beamforming struc-
ture is employed at the transmitter, while the receiver has an
omni-directional antenna that receives in all directions. The
transmitter is equipped with N antennas and R RF chains,
where R ≪ N . The mmWave channel is characterized by a
geometric channel model [13]

h =

P∑
p=1

αpat(θp) (1)

where P is the number of paths, αp is the complex gain asso-
ciated with the pth path, θp ∈ [0, 2π] is the associated azimuth
angle of departure (AoD), and at ∈ CN is the transmitter ar-
ray response vector. Suppose a uniform linear array (ULA) is
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used. Due to the sparse scattering nature of mmWave chan-
nels, h has a sparse representation in the beam space (angle)
domain: h = Dx, where D ∈ CN×N is the discrete Fourier
transform (DFT) matrix, and x ∈ CN is a K-sparse vector.
If the true AoD parameters {θp} lie on the discretized grid
specified by the DFT matrix, then the number of nonzero en-
tries in the beam space domain equals the number of signal
paths, i.e. K = P . The objective of beam alignment is to
estimate the AoD and the attenuation (in magnitude) of each
path, which is equivalent to recover the location indices and
the magnitudes of the nonzero entries in x. The AoDs of the
dominant paths are then reported back to the base station via a
control channel for beam alignment. Suppose the transmitter
sends a constant signal s(t) = 1 to the receiver. The signal
received at the tth time instant can thus be expressed as

r(t) = hT c(t)s(t) + w(t) = cT (t)Dx+ w(t) (2)

where c(t) ∈ CN is the beamforming vector used by the
transmitter at the tth time instant, and w(t) denotes the ad-
ditive complex Gaussian noise with zero mean and variance
σ2. The beamforming vector can be expressed as

c(t) = F RF(t)fBB(t) (3)

in which F RF(t) ∈ CN×R and fBB(t) ∈ CR represent the ra-
dio frequency (RF) precoding matrix and the baseband (BB)
precoding vector, respectively. Specifically, to provide a suf-
ficient beamforming gain for signal reception, the transmitter
needs to form multiple beams simultaneously and steers them
towards different directions to probe the channel. To this ob-
jective, the RF precoding matrix is chosen to be a submatrix
of the DFT matrix D, i.e.

F RF(t) = D∗S(t) (4)

where S(t) ∈ RN×R is a column selection matrix containing
only one nonzero entry per column.

Substituting (3)–(4) into (2), we obtain

r(t) = aT (t)x+ w(t) (5)

where a(t) , S(t)fBB(t) is an N -dimensional sparse vector
with at most R nonzero elements. It should be noted (5) is an
ideal model without taking the carrier frequency offset (CFO)
effect into account. In mmWave communications, due to the
CFO between the transmitter and the receiver, the measure-
ments r(t) may incur an additional unknown phase shift that
varies across time. In this case, only the magnitude informa-
tion of the measurements r(t), t = 1, . . . , T is reliable.

Our objective, therefore, is to devise a measurement ma-
trix A , [a(1) . . . a(T )]T ∈ CT×N and develop an effi-
cient recovery algorithm to recover z = |x| from phaseless
measurements:

y , |r| = |Ax+w| (6)

where r , [r(1) . . . r(T )]T , and w , [w(1) . . . w(T )]T .
The measurement matrix A has to satisfy:

C1 A is a sparse matrix with each row of A containing at
most R nonzero elements.

For this reason, the design of the measurement matrix A is
referred to as sparse encoding.

3. PROPOSED GF-CODE ALGORITHM

In this section, we propose a GF-Code algorithm for sparse
encoding and phaseless decoding.

3.1. Sparse Encoding

The proposed GF-Code uses a set of bipartite graphs {Gl}Ll=1

to encode the sparse signal. Let H l ∈ {0, 1}M×N denote the
binary code matrix associated with Gl with N left nodes and
M right nodes. The (i, j)th entry of H l is given by

Hl(i, j) =


1 if and only if left node j of Gl is connected

to right node i of Gl

0 otherwise

Given {H l}, the measurement matrix A ∈ R2ML×N is de-
vised as

A ,

 A1

...
AL

 ,

 H1 ⊙ T
...

HL ⊙ T

 (7)

where ⊙ denotes the Khatri-Rao product, and T ∈ R2×N is a
modulation matrix defined as

T =

[
1 1 · · · 1

1/N 2/N · · · 1

]
(8)

For each graph Gl, each of its left node can be deemed as
a component of the sparse signal x, and each right node of Gl

refers to a set of 2 measurements obtained as

yl,m = |(H l[m, :]⊙ T )x+wl,m| ∀m = 1, . . . ,M (9)

where H l[m, :] denotes the mth row of H l, and wl,m denotes
the noise added to the mth right node of Gl. A left node, say
node n, is called as active left node if the nth signal compo-
nent, xn, is nonzero. For a K-sparse signal x, there are K
active left nodes in total. A right node is called as a nullton, a
singleton or a multiton if:

• Nullton: A right node is a nullton if it is not connected
to any active left node.

• Singleton: A right node is a singleton if it is connected
to exactly one active left node.
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• Multiton: A right node is a multiton if it is connected
to more than one active left node.

A bipartite graph is called an NM-graph if

• No-Multiton-graph (NM-graph): A bipartite graph
whose right nodes are either singletons or nulltons.

For our proposed GF-Code, the purpose of employing multi-
ple bipartite graphs is to ensure that, with an overwhelming
probability, there exists at least an NM-graph, i.e. a bipartite
graph whose right nodes are either singletons or nulltons.

The bipartite graphs {Gl} with N left nodes and M (M >
K) right nodes are designed as follows. Assume r , N/M
to be an integer. For each graph, we randomly divide N left
nodes into M equal-size, disjoint sets (i.e. each set has r left
nodes) and establish a one-to-one correspondence between M
sets of left nodes and M right nodes. If N is not an inte-
ger multiple of M , we can still divide N left nodes into M
disjoint sets, with all sets, except the last one, consisting of
r = floor(N/M) left nodes. For each bipartite graph Gl

devised as described, its corresponding binary code matrix
H l has only one nonzero element per column, and at most r
nonzero elements per row. Therefore, we can choose R ≥ r
such that A satisfies constraint C1. Once A is given, the RF
precoding matrices {F RF(t)} and baseband precoding vectors
{fBB(t)} can be accordingly determined.

3.2. Phaseless Decoding

We next devise a phaseless decoding scheme to estimate z =
|x| from noisy measurements y. The measurements associat-
ed with the bipartite graph Gl are give by yl , |Alx +wl|,
and the measurements, yl,m ∈ R2, corresponding to the mth
right node of Gl are expressed as

yl,m = |(H l[m, :]⊙ T )x+wl,m| ∀m = 1, . . . ,M (10)

We first need to decide whether a right node of Gl is a nullton
or not. Such a problem can be formulated as a binary hypoth-
esis test problem:

H0 : y
(1)
l,m = |w(1)

l,m|

H1 : y
(1)
l,m =

∣∣∣∣∣ ∑
mi∈S

xmi + w
(1)
l,m

∣∣∣∣∣ (11)

where y(1)l,m denotes the first entry of yl,m, w(1)
l,m is the additive

complex Gaussian noise with zero mean and variance σ2, and
S denotes the set of indices of those active left nodes that are
connected to the mth right node of Gl. A simple energy detec-

tor can be used to perform the detection: y(1)l,m

H1

≷
H0

ϵ. It is clear

that y(1)l,m under H0 follows a Rayleigh distribution. Given a
prescribed false alarm probability, the threshold ϵ > 0 can
be easily determined from the distribution of y(1)l,m under H0.

Such an energy detector is able to yield satisfactory detection
performance for a moderate and high signal-to-noise ratio.

To proceed with our decoding scheme, we assume all null-
ton right nodes of Gl are correctly identified. In this case,
we are able to determine whether Gl is an NM-graph or not.
Specifically, if Gl is an NM-graph, then it contains M − K
nullton right nodes; otherwise the number of nullton right n-
odes is greater than M −K. Although the number of active
left nodes, K, is unknown a priori, those graphs which have
the smallest number of nullton right nodes can be considered
as NM-graphs and K can be simply estimated as K̂ = M−J ,
where J denotes the smallest number of nullton right nodes
among all graphs.

We now perform decoding on those NM-graphs. Suppose
Gl is an NM-graph and its mth right node is a singleton. Also,
xmi is the active left node connected to the mth right node.
When noise is present, the measurements corresponding to
the mth right node of the graph Gl can be expressed as

yl,m =

[
|xmi + w

(1)
l,m|∣∣∣mi

N xmi
+ w

(2)
l,m

∣∣∣
]
,

[
y
(1)
l,m

y
(2)
l,m

]
(12)

where y
(1)
l,m and y

(2)
l,m denote the first and the second entry

of yl,m, respectively, w(1)
l,m and w

(2)
l,m denote the observation

noise added to the first and the second entry of the mth right
node, respectively. In this case, the magnitude and the loca-
tion index of the active left node can be estimated as

zm̂ = y
(1)
l,m

m̂ = argmin
m∈{m(l)

1 ,...,m
(l)
r }

∣∣∣∣∣mN −
y
(2)
l,m

y
(1)
l,m

∣∣∣∣∣ (13)

where {m(l)
1 , . . . ,m

(l)
r } denotes the set of indices of the left

nodes connected to the mth right node of Gl. After perform-
ing (13) for all singleton right nodes, we are able to obtain an
estimate of z = |x|. Let ẑ(l) denote an estimate of z obtained
from the measurements associated with Gl. Since we may
have more than one NM-graphs, we are able to collect multi-
ple estimates of z. The problem lies in, due to the existence of
noise, these multiple estimates, denoted as {ẑ(1), . . . , ẑ(I)},
are not exactly the same, in terms of both the estimated mag-
nitudes and the estimated support sets. In the following, we
propose a set-intersection scheme to combine these multiple
estimates into a more accurate estimate.

To better illustrate our idea, suppose there are two NM-
graphs, say Gi and Gj , and xn is the only active left node in
x. Recall that for each bipartite graph, the N left nodes are di-
vided into M disjoint sets, with each set of left nodes connect-
ed to an individual right node. Let S(i)

n denote the set of left
nodes to which xn belongs in graph Gi, and S

(j)
n denote the

set of left nodes to which xn belongs in graph Gj . Suppose
the singleton right nodes in both Gi and Gj are correctly iden-
tified. Then we know that xn belongs to both S

(i)
n and S

(j)
n .
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If the intersection of the two sets S
(i)
n and S

(j)
n , S(i)

n ∩ S
(j)
n ,

contains only one element, then it must be xn and the loca-
tion index of xn can be uniquely determined. Such an idea
can be easily extended to the scenario where there are more
then two NM-graphs, and for such a case, the set-intersection
scheme is more likely to succeed because the more sets are
used, the higher the probability of the intersection of these
sets containing only one element.

There, however, is a problem for the general case where
x contains multiple nonzero components (i.e. multiple active
left nodes). In this case, we have no idea which set of left n-
odes a certain active node belongs to for each NM-graph. As
a result, it is impossible to determine which sets should be put
together to perform the intersection operation. To overcome
this difficulty, we note that the magnitudes of those active left
nodes are generally different. Hence the estimated magnitude
can be used to identify a certain active left node. Without
loss of generality, let x1, . . . , xK denote the nonzero com-
ponents of x in decreasing order in terms of magnitude, i.e.
|x1| > · · · > |xK | > 0. For each NM-graph, say graph Gi,
we can obtain an estimate of |x|, denoted as z(i). Specifically,
let ẑi1 > · · · > ẑiK > 0 represent the nonzero components
of ẑ(i), then the kth largest element ẑik can be regarded as an
estimate of |xk|. For each NM-graph, say Gi, the set of left
nodes containing xk can therefore be determined as the set
of left nodes containing ẑik . A set intersection operation can
then be performed to yield the final estimate of the location in-
dex of xk. On the other hand, the magnitude of the kth largest
component of x can be estimated as the average of all esti-
mates, i.e. |x̂k| = 1

I

∑I
i=1 ẑik . Note that if the intersection

of the sets contains more than one element, then we randomly
pick up an element in the intersection set as the estimate of
the location index of xk. In addition, in case the intersection
is an empty set, which is possible due to the incorrect associa-
tion between {x1, . . . , xK} and {ẑi1 , . . . , ẑiK}, we randomly
select an estimate from {ẑ(1), . . . , ẑ(I)} as the final estimate.

3.3. Theoretical Results for GF-Code

We have the following theoretical guarantee for our proposed
GF-Code scheme. To simplify our analysis, we assume a
noiseless case and r , N/M is an integer. The results are
summarized as follows.

Theorem 1 Consider the phaseless decoding problem in (6),
where the measurement matrix A ∈ R2ML×N is generated
according to our proposed sparse encoding scheme. If M ≥
K, then our proposed algorithm can perfectly recover z =
|x| from phaseless measurements with probability exceeding

p = 1− (1− λ)
L (14)

where λ is defined as λ , rKCK
M/CK

N , in which CK
N denotes

the number of K-combinations from a set with N elements.
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Fig. 1. Success rates vs. T , and beamforming gains vs. SNR.

Due to space limitations, the proof for Theorem 1 is omit-
ted but available at https://arxiv.org/abs/1811.
04775, where we also show that the sample complexity for
our proposed algorithm is of order O(K2).

4. SIMULATION RESULTS

In our simulations, the distance between neighboring antenna
elements is assumed to be d = λ/2. The nonzero components
of x are assumed to be random variables following a circular-
ly symmetric complex Gaussian distribution CN (0, 1), and
the locations of nonzero entries of x are uniformly chosen at
random. Fig. 1(a) depicts the success rates of our proposed
algorithm as a function of the total number of measurements
T = 2ML, where we set N = 128, and M = 16. The suc-
cess rate is computed as the ratio of the number of successful
trials to the total number of independent runs. A trial is con-
sidered successful if ∥ẑ− z∥22/∥z∥22 < 10−8. The results are
averaged over 104 independent runs. In each run, x (i.e. h)
is randomly generated. In the figure, solid lines represent the
theoretical performance given in (14), while the circle marks
represent the performance obtained via the Monte Carlo ex-
periments. From Fig. 1(a), we see that our theoretical result
matches the empirical result very well.

Next, we compare our proposed algorithm with the Agile-
Link [21], a beam steering scheme which also relies on the
magnitude information of measurements for recovery of sig-
nal directions. The beamforming gain defined below is used
as a metric to evaluate the performance of respective beam s-
teering schemes GBF = E[N |aH

t (θ̂opt)h|2/∥h∥22], in which
θ̂opt denotes the estimated optimal beam direction. Fig. 1(b)
depicts the beamforming gains of respective algorithms as a
function of signal-to-noise ratio (SNR), where the total num-
ber of measurements T = 64 is set the same for both schemes,
and, for a fair comparison, the beamforming vector c(t) used
in both schemes is normalized to unit norm. The SNR is
defined as 10 log(∥h∥22/(Nσ2)). We see that our proposed
method yields a higher beamforming gain than the Agile-Link
scheme, which suggests that our proposed method can help
find a more accurate optimal beam direction.
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