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ABSTRACT
This paper considers multiuser massive MIMO downlink transmis-
sion, where the base station (BS) employs a massive number of
transmit antennas, each equipped with a low-resolution phase shifter,
to simultaneously shape desired symbols at user side, after passing
through the channels and receive beamforming. This channel-aided
shaping technique, known as symbol-level nonlinear precoding, has
recently gained considerable attention owing to its high power ef-
ficiency and low implementation cost. However, the design of the
transmit signal itself is challenging because the restriction of the
transmit signals to a discrete constant envelope (DCE) set leads to
a discrete optimization problem. In this paper, we adopt a minimum
symbol-error probability design criterion for joint optimization of
the transmit DCE signal at the BS and the receive beamformers at the
users. An alternating minimization method is built for the problem.
The design of the transmit DCE signal leverages on a negative square
penalty (NSP) method developed in our recent work. The design of
receive beamformers can be decoupled among users and updated by
non-convex gradient projection independently. Our simulation re-
sults show that the bit-error rate performance markedly improves as
the number of receive antennas increases.

Index Terms— multiuser massive MIMO, discrete constant en-
velope, minimum symbol-error probability

1. INTRODUCTION

The trend of using massive MIMO in wireless communication sys-
tems has recently triggered great interest in constant envelope (CE)
precoding methods. While massive MIMO is promising in providing
high spectral efficiency and many other benefits, power consumption
and hardware cost are becoming a bottleneck for the development
of massive MIMO. CE precoding, in which cheap phase shifters
are deployed at the base station (BS), provides a solution to over-
come this issue. By using the phase shifters, the demand for large
linear-amplification dynamic ranges of the power amplifiers can be
relaxed significantly. In practice, phase shifters only have finite dis-
crete phase combinations rather than continuous phase states, which
raises an issue in CE precoding designs. This paper will focus on the
discrete CE (DCE) transceiver design.

Most existing works assume continuous phase shifters. Some
early works [1, 2] conducted a full study of CE precoding for the
single-user MISO case. Shortly afterward, some CE precoding
designs for the multiuser MISO case emerged using different ap-
proaches [3–7]. A constellation independent approach, which min-
imizes multiuser interference power in the least squares sense, was
adopted in [3–5]. A constructive interference approach, which ex-
ploits the PSK constellation structure, was proposed in [6]. Recently,
these formulations were extended to tackle the more challenging

DCE precoder designs [8, 9]. As a remark, we should mention
that the emerging one-bit precoding problem can be regarded as a
special case of the DCE precoding problem. Interested readers are
referred to [10–12] for details. As our latest endeavor, a systematic
approach for minimization of symbol-error probabilities was pro-
posed in [13] for one-bit, continuous CE and DCE precoding. The
research advances in this topic, as it stands, are with the multiuser
MISO case. On the other hand, it is well known that multiuser
MIMO, in which users can perform receive beamforming, has great
potential in system performance enhancement.

In this paper, we take a step ahead into the realm of multiuser
MIMO DCE precoding by extending our very recent developed tech-
nique in [13]. Or, this paper can be seen as a conference version of
[13], with new elements (multiuser MIMO) not seen in [13]. We pro-
pose to jointly optimize the transmit DCE precoder and the receive
beamformers to minimize the symbol-error probabilities (SEPs). By
applying alternating minimization, we update the DCE precoder and
receive beamformers in an alternating fashion. The update for the
DCE precoder is done by applying the techniques proposed in [13],
while the update for receive beamformers can be decoupled among
users, and a non-convex gradient projection method is employed to
optimize the receive beamformers. Simulation results indicate that
the BER performance can be significantly enhanced when the num-
ber of receive antennas increases.

2. PROBLEM FORMULATION

Consider a multiuser MIMO downlink transmission scenario, where
a BS with N transmit antennas sends K separate data streams to K
users, one for each user. For simplicity, we assume that each user
has M receive antennas. The scenario is depicted in Fig. 1. Let
xt ∈ CN be the transmit signal at time t. The receive signals at the
users are given by

yi,t = Hixt + ni,t, i = 1, . . . ,K, t = 1, . . . , T, (1)

where yi,t ∈ CM is the receive signal of user i at time slot t; T is
the transmission block length; Hi ∈ CM×N is the downlink channel
associated with user i, which is assumed to be unchanged during the
transmission block (i.e., the so-called block fading assumption); ni,t
is additive noise, and it is assumed that ni,t ∼ CN (0, σ2I). At the
user side, each user performs receive beamforming

zi,t = vHi yi,t = vHi Hixt + vHi ni,t, (2)

where vi ∈ CM is the receive beamformer for user i.
Herein, the BS employs phase shifters with finite phase combi-

nations to generate the transmit signal xt, that is, each element of
xt is drawn from a discrete set with constant envelope. In particular,
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Fig. 1: The scenario.

we write xt =
√

P
N
ut, ut ∈ UN , where P is the total transmission

power at the BS, and

U , {u = ej(
2π
L
l+ π
L ) | l = 0, . . . , L− 1} (3)

with L being some positive even integer. Fig. 2 illustrates an exam-
ple of the set U . Note that the one-bit precoding problem is a special
case of (3) with L = 4, as illustrated in Fig. 1(a).

(a) DCE set U ; L = 4 (b) DCE set U ; L = 8

Fig. 2: Illustration of DCE set; the red points are the elements in U

We aim to jointly design the precoder {ut}t and the receive
beamformers {vi}i such that all the users can successfully recover
their desired symbols {si,t}t from {zi,t}t with minimal chances of
error. In this work, we focus on the QAM constellation, i.e.,

si,t ∈ S , {sR+ jsI | sR, sI ∈ {±1,±3, . . . ,±(2B−1)}}, ∀ i, t
(4)

for some positive integer B, and we adopt the SEP as our design
metric. To this end, each user detects the symbols by

ŝi,t = dec(<(zi,t)/d
R
i ) + j · dec(=(zi,t)/d

I
i ), (5)

where dec(·) is the decision function for {±1,±3, . . . ,±(2B−1)};
dRi and dIi represent the inter-point spacings of the received symbol
in the in-phase and quadrature direction for user i, resp. (see Fig. 1).
Note that the decoding performance also depends on dRi and dIi , and
thus they need to be jointly optimized with {ut}t and {vi}i. Read-
ers are referred to [11, 13] for more explanations on the inter-point
spacings.

With (1)-(5), the conditional SEP is defined as

SEPi,t = Pr(ŝi,t 6= si,t | si,t). (6)

We will simply call (6) SEP in the sequel. Now, our problem of
interest is to minimize the worst SEP over all the users and over the

whole transmission block, which reads

min
U,d,V

max
i=1,...,K
t=1,...,T

SEPi,t

s.t. U ∈ UN×T ,d ≥ 0, ‖vi‖2 = 1, i = 1, . . . ,K,

(7)

where U = [u1, . . . ,uT ]; V = [v1, . . . ,vT ]; d = [(dR)T , (dI)T ]T ,
dR = [dRi , . . . , d

R
K ]T , dI = [dIi , . . . , d

I
K ]T . Note that, without loss

of generality, each receive beamformer vi is assumed to have unit
norm, ‖vi‖2 = 1, ∀ i.

2.1. SEP Approximation

The exact SEP expression in (6) was shown in [13]. It does not admit
an easy-to-optimize form, and thus we turn to tractable approxima-
tion. By extending our exact SEP expression for the multiuser MISO
case in [13], it can be shown the SEP in (6) is bounded by

max{SEPRi,t, SEPIi,t} ≤ SEPi,t ≤ 2 max{SEPRi,t, SEPIi,t}, (8)

where

SEPRi,t ≤ 2 max

{
Q

(√
2bRi,t

σ‖vi‖

)
, Q

(√
2cRi,t

σ‖vi‖

)}
, (9a)

bRi,t = dRi −

(√
P

N
<{vHi Hiut} − dRi <{si,t}

)
, (9b)

cRi,t = dRi +

(√
P

N
<{vHi Hiut} − dRi <{si,t}

)
, (9c)

SEPIi,t, b
I
i,t and cIi,t are defined in the same way as SEPRi,t, b

R
i,t and

cRi,t by replacing “< ” and “R” in (9) with “= ” and “I”, resp., and,
Q(x) =

∫∞
x

1√
2π
e−z

2/2dz. In the following, we focus on minimiz-
ing the SEP upper bound in (9a).

2.2. Problem Reformulation

Applying (8)-(9) into (7), and using the monotonicity of Q(·), we
can consider

min
U,d,V

max
i,t

{
−bRi,t,−bIi,t,−cRi,t,−cIi,t

}
s.t. U ∈ UN×T ,d ≥ 0, ‖vi‖2 = 1, i = 1, . . . ,K.

(10)

as a replacement of problem (7). It is more convenient to convert
problem (10) to a real-valued problem. It can be shown that

<(vHi Hiut) = v̄Ti H̄iūt, =(vHi Hiut) = v̄Ti H̃iūt, (11)
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where

v̄i = [<(vi)
T=(vi)

T ]T , ūt = [<(ut)
T=(ut)

T ]T ,

H̄i =

[
<(Hi) −=(Hi)
=(Hi) <(Hi)

]
, H̃i =

[
=(Hi) <(Hi)
−<(Hi) =(Hi)

]
.

Then, the real-valued equivalent form of (10) is given by

min
Ū,d,V̄

forig(Ū ,d, V̄ ) , max
i,t

{
−bRi,t,−bIi,t,−cRi,t,−cIi,t

}
s.t. cpl(Ū) ∈ UN×T ,d ≥ 0, ‖v̄i‖2 = 1, i = 1, . . . ,K,

(12)

where Ū = [ū1, . . . , ūT ]; V̄ = [v̄1, . . . , v̄K ]; X̃ = cpl(X)
is an operator that maps a real-valued matrix X ∈ R2n×m into
a complex-valued matrix X̃ ∈ Cn×m through the relation X =[
<(X̃)T ,=(X̃)T

]T
.

3. PROPOSED SOLUTION FOR PROBLEM (11)

Problem (12) is non-smooth and non-convex. To tackle it, we lever-
age on our recently proposed negative penalty (NSP) method [13].
The NSP method reformulates problem (12) as

min
Ū,d,V̄

forig(Ū ,d, V̄ )− λ
T∑
t=1

‖ūt‖2

s.t. cpl(Ū) ∈ ŪN×T ,d ≥ 0, ‖v̄i‖2 = 1, i = 1, . . . ,K,

(13)

where Ū , conv U is the convex hull of U , as illustrated as the
shaded area in Fig. 2; λ > 0 is a penalty parameter. Intuitively,
the NSP reformulation relaxes the DCE set U as its convex hull Ū ,
and at the same time it adds an NSP term to the objective to force
the solution to a vertex of Ū , i.e., a point in U . It is shown in [13,
Theorem 1] that for a sufficiently large λ, problems (12) and (13)
are equivalent. The important advantage of NSP is that the NSP
reformulation (13) now has convex constraints with respect to Ū ,
rather than discrete DCE constraints as in the original problem.

We apply alternating minimization to problem (13), with the
transmit signals and the receive beamformers optimized in an alter-
nating fashion. The algorithm is summarized in Algorithm 1, where
GEMM and GP stand for the GEMM algorithm for updating (Ū ,d)
and gradient projection (GP) algorithm for updating V̄ , resp., which
will be introduced in the next subsections. Note that the penalty pa-
rameter λ is increased every J iteration (cf. line 5). We found that,
empirically, this strategy is effective in speeding up the convergence.

Algorithm 1 Alternating Minimization for Problem (13)

1: Given a starting point Ū0, d0, V̄ 0, an initial λ > 0, a threshold
λupp > 0, an integer J , a constant c > 1.

2: for k = 0, 1, 2, . . . do
3: Update (Ūk+1,dk+1) = GEMM(Ūk,dk, V̄ k);
4: Update v̄k+1

i = GP(Ūk+1,dk+1, v̄ki ), i = 1, . . . ,K;
5: Update λ = λ× c every J iterations.
6: end for when λ > λupp.

Next, we will specify the GEMM and GP algorithms.

3.1. The Update for (Ū ,d)

When the receive beamforming matrix V̄ in problem (13) is fixed,
problem (13) reduces to a virtual MISO precoding problem and can

be handled by the GEMM algorithm proposed in [13]. In view of
space limit, we will only give a high-level description of GEMM.

First, we apply smooth approximation, namely log-sum-exp ap-
proximation, to the objective of (13), which leads to

min
Ū,d

f(Ū ,d, V̄ )− λ
T∑
t=1

‖ūt‖2 (14a)

s.t. cpl(Ū) ∈ ŪN×T ,d ≥ 0, (14b)

where f(Ū ,d, V̄ ) , µ log
(∑K

i=1

∑T
t=1 fi,t(ūt,d, v̄i)

)
with

fi,t(ūt,d, v̄i) = e−b
R
i,t/µ + e−b

I
i,t/µ + e−c

R
i,t/µ + e−c

I
i,t/µ; µ > 0

is a smoothing parameter, and f(Ū ,d, V̄ ) → forig(Ū ,d, V̄ ) as
µ→ 0.

Second, we apply majorization-minimization (MM) to handle
the smoothed problem (14). Notice that f(Ū ,d, V̄ ) is convex w.r.t.
(Ū ,d) for fixed V̄ . Hence, (14a) is in the form of difference-of-
convex (DC) function, which can be handled by MM. Specifically,
we repeatedly solve the following majorization problem of (14):

min
Ū,d

f(Ū ,d, V̄ )− 2λ

T∑
t=1

(ūjt)
T (ūt − ūjt)

s.t. cpl(Ū) ∈ ŪN×T ,d ≥ 0,

(15)

where ūjt represents the last MM iteration result and j is the MM
iteration index. For such a smooth convex problem, one can apply
the gradient projection method to solve it. Its iterative update reads

Ū i+1 =ΠŪN×T (Ū i − βi∇Ūf(Ū i,di));

d̄i+1 =ΠR2K
+

(d̄i − βi∇d̄f(Ū i,di));
(16)

where βi is the step size at iteration i; ΠX (x) = arg miny∈X ‖x−
y‖2 denotes the projection of x onto X . The projection ΠR2K

+
can

simply be done by thresholding. For ΠŪN×T , it suffices to consider
ΠŪ . Curiously, it is shown that ΠŪ has a simple closed-form solu-
tion [13]; specifically, we have

ΠŪ (u) = ej
2πn
L

(
[<(ũ)]cos(π/L)

0 + j [=(ũ)]
sin(π/L)

− sin(π/L)

)
, (17)

where
n =

⌊
∠u+π/L

2π/L

⌋
, ũ = ue−j 2πn

L .

It should be noted that the MM described above is not exactly
the method we eventually use to handle (15). As an improvement,
we do not solve the MM subproblem (15) exactly; instead we ap-
ply one-step extrapolated gradient descent to update the solution of
(15). With such inexact MM update, we found that the algorithm
empirically runs much faster than exact MM, and moreover, it also
possesses the same convergence guarantees as exact MM. This al-
gorithm is called GEMM, and readers are referred to [13] for full
details.

3.2. The Update for V̄

Given Ū and d, the update of V̄ requires solving

min
V̄

max
i,t

{
−bRi,t,−bIi,t,−cRi,t,−cIi,t

}
s.t. ‖v̄i‖2 = 1, i = 1, . . . ,K.

(18)
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By noticing that the v̄i’s are independent both in the objective func-
tion and constraints, problem (18) can be decoupled among users.
Specifically, the optimization of each v̄i is done by solving

min
v̄i

gorig(v̄i) , max
t

{
−bRi,t,−bIi,t,−cRi,t,−cIi,t

}
s.t. ‖v̄i‖2 = 1.

(19)

Similarly, we apply log-sum-exp smooth approximation to recast the
problem (19) as

min
v̄i

g(v̄i) s.t. ‖v̄i‖2 = 1, (20)

where g(v̄i) = η log
(∑T

t=1 gi,t(ūt,d, v̄i)
)

for η > 0, and

gi,t(ūt,d, v̄i) = e−b
R
i,t/η+ e−b

I
i,t/η+ e−c

R
i,t/η+ e−c

I
i,t/η. We use

the GP method to handle the subproblem (20):

v̄j+1
i = ΠV(v̄ji − γj∇v̄ig(v̄ji )),

where j is the iteration index; γj is the step size and is determined
by backtracking line search [14]; V,{vi| ‖vi‖2 = 1}, and

ΠV(x) =

{
any x̃ with ‖x̃‖2 = 1, if x = 0,

x/‖x‖, otherwise.

It is known that the above GP method guarantees convergence to a
critical point of problem (20) [15].

4. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed algo-
rithm by Monte-Carlo simulations. We measure the bit error rate
(BER) averaged over 5, 000 channel trials. The transmission block
length is T = 10. The elements of channel Hi are i.i.d. generated
from CN (0, 1) in each trial. The total transmission power at BS is
P = 1. The BS is equipped with N = 128 antennas.
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Proposed (M=2)
Proposed (M=4)

Fig. 3: BER performance of DCE precoding for different numbers
of receive antennas. 16-QAM, L = 4.

For Algorithm 1, the smoothing parameters are µ = 0.05 and
η = 0.01. The sub-algorithm GEMM is stopped when the difference
of successive iterates satisfies ‖Ū j+1 − Ū j‖2F + ‖dj+1 − dj‖2 ≤
10−4 or when the maximum iteration 200 is reached; GP is stopped
when ‖v̄j+1

i − v̄ji ‖
2 ≤ 10−4 or when the maximum iteration 200 is

reached. The penalty parameter λ is initialized as 0.01, and we set
λupp = 100, J = 5 and c = 5.

Figs. 3 and 4 show the BER performance for the one-bit case,
i.e., L = 4. There are K = 16 users. Fig. 3 considers the 16-
QAM constellation, while Fig. 4 the 64-QAM constellation. The
benchmarked algorithm “SQUID” proposed in [10] is a popular al-
gorithm for one-bit precoding for the multiuser MISO case. We see
that the BER performance improves as the number of receive anten-
nas increases. In particular, in Fig. 4, adding one more antennas
(M = 2) at user sides leads to an SNR gain over 5dB compared
with the MISO case.
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Fig. 4: BER performance of DCE precoding for different numbers
of receive antennas. 64-QAM, L = 4.

10 12 14 16 18 20 22 24 26 28 30

P/σ2, in dB

10-4

10-3

10-2

10-1

100

B
E

R

Proposed (M=1)
Proposed (M=2)
Proposed (M=4)

Fig. 5: BER performance of DCE precoding for different numbers
of receive antennas. 64-QAM, L = 8.

Fig. 5 shows the BER performance of the DCE case withL = 8.
There are K = 32 users. 64-QAM is used for transmission. Again,
we see that adding receive antennas improves the BER performance.

5. CONCLUSION

In this paper, we have considered a joint design of transmit DCE pre-
coding and receive beamforming for the multiuser massive MIMO
scenario. Simulation results suggest that employing multiple anten-
nas at the user side is beneficial in enhancing the BER performance.
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