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ABSTRACT

The nonlinear nature of the quantization operation performed by the
ADCs imposes great challenges to the systems employing coarse
quantization. Systems operating in moderate to high SNR regimes
experience a pronounced capacity loss and also impairments in the
quality of the channel estimates, compared to the infinite precision
case. This work proposes a multiuser MIMO channel estimation algo-
rithm that operates with low-resolution receiving ADCs. The strategy
is based on an coarse quantizer followed by an EM-ML estimator,
that takes as input the observation vector subtracted by an offset value
produced by a first rough channel estimate. The approach performed
by this feedback-controlled double-stage estimator aims to make the
quantizer thresholds based on the low-SNR Cramér-Rao lower bound
approximation valid in the high SNR region. Numerical analysis
reveals that reliable estimation is achieved in coarse quantization for
a wide range of SNR with a very small and constant gap in relation to
infinite precision quantized estimation.

Index Terms— Quantization, MIMO, multiuser, channel estima-
tion, EM algorithm, Cramér-Rao Lower Bound

1. INTRODUCTION

Massive Multiple-input multiple-output (MIMO) systems in wireless
communications promise to meet the ever growing demands for higher
throughput and reliable wireless links of the next generation wireless
communications systems as 5G cellular system. However, the large
number of antennas poses new challenges for system design and hard-
ware implementation as the energy consumption and circuit complex-
ity increases accordingly. For example, the energy consumption of
an analog to digital converter (ADC) grows exponentially as a func-
tion of the quantization resolution. An additional motivation for re-
ducing the ADC resolution is to limit the amount of data that has to
be transferred over the link that connects the RF components and the
baseband-processing unit. Alleviating this capacity bottleneck is of
particular importance in a cloud radio access network (C-RAN) archi-
tecture [1], where the baseband processing is migrated from the base
stations (BS) to a centralized unit, which may be placed at a significant
distance from the BS antenna array. Therefore using low resolutions
ADC is a cost-effective solution for massive MIMO systems when ar-
ray size becomes very large or when the sampling rate becomes very
high. To address these challenges, recent works considers the use of
low-resolution ADCs for massive MIMO systems in order to reduce
circuit complexity and save energy. However the use of low-resolution
ADCs generates significant nonlinear distortion and, thus further chal-
lenges are imposed on the signal processing techniques in order to
provide reliable data transmission, requiring the development of de-
tection and estimation algorithms that operate on coarsely quantized
signals.

Recent works on the estimation of unknown parameters based on
quantized data can be found in [2–5]. In [6], a closed-form solution
for the maximum likelihood channel estimate with one-bit quantized
data is presented. In [2], a more general setting is studied, where the
Expectation Maximization (EM) based algorithm [7] is proposed to

solve the Maximum a Posteriori Probability (MAP) channel estima-
tion problem when few-bits quantized data is employed. The use of
Cramér-Rao lower bound (CRLB) to set the thresholds of a fixed quan-
tizer have been shown to produce mean square error (MSE) curves that
are non monotonic with the SNR; moreover, there is an optimal SNR
that results in the minimum MSE value. Besides, the gap to the ideal
(infinite resolution) ADC in terms of the estimation performance is
relatively small at the low SNR region and this gap degrades when the
SNR is above the optimal value, which means that the noise may be
favorable at certain level. This phenomenon was observed in several
works on quantized data [2, 6, 8] and poses a challenge on channel
estimation in high SNR region using fixed quantization thresholds.

It was shown in [9, 10] that the estimation of a constant param-
eter based on quantized noisy measurements achieves a constant loss
(w.r.t to CRLB) in relation to the unquantized one when an offset given
by the feedback from the output is used at the input of the quantizer.
For constant input offset, binary quantization, and Gaussian noise, the
best choice for the offset has been shown to be the parameter itself,
and in this case the constant loss is π

2
. For few-bits quantized data

an EM algorithm is presented for MAP parameter estimation in noisy
measurements using a known feedback-control given by the previous
estimates. However, the choice of the quantizer thresholds that min-
imize the constant loss w.r.t to CRLB of the unquantized data is not
shown for few-bits quantized data.

Thus, in this work a feedback-controlled EM approach is used
to implement a double-stage Maximum Likelihood (ML) channel es-
timation algorithm with optimal fixed thresholds for MIMO systems
using few-bits ADC is proposed. In particular, using time-multiplexed
pilots [6], the MIMO channel is transformed into a SISO channel (con-
sidering independent noise at the receiver) and the estimation problem
is reduced to a set of scalar channel estimations. Using this approach,
each channel coefficient of the MIMO matrix is estimated indepen-
dently using the feedback-controlled EM algorithm with a reduced
complexity as no channel inversion is required. Here, the EM-ML
channel estimate output itself is used as an offset at the input of the
quantizer in order to approximate the low-SNR loss factor w.r.t to
CRLB of the unquantized estimate that depends only on the quantizer
features. This allows the determination of thresholds that minimize
and maintains fixed the loss factor throughout a wide SNR range. In
order to use the most reliable feedback EM-ML channel estimate in
high SNR region, we propose to use dithering to approximate to the
SNR region where the MSE is minimum.

The proposed few-bits MU-MIMO estimation algorithm, com-
prised by the characteristics aforementioned, achieves estimation per-
formance that maintains constant loss compared to the unquantized
estimator for any SNR, resulting in improved performance compared
to other strategies proposed up to date.

The following notation is used: N (a, b) denotes a Gaussian dis-
tributed random variable, with mean a and variance b. The indicator
function IA(c) assumes the value 1 if c ∈ A, and 0 otherwise. The
cumulative distribution function of the standard normal distribution is
denoted by Φ. Finally, 1d corresponds to the vector with unit entries
and length d, and circshift(A) performs the circular shift operation
on the columns of the matrix A.
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2. SYSTEM MODEL

This work considers the pilot-aided channel estimation phase of a mul-
tiuser MIMO communication system. In this scenario, a BS equipped
with M̃ antennas receive training symbols from K single-antenna
users located within a cell. The signals are simultaneously transmitted
by the users over successive transmission periods, and after traversing
the wireless channel, considered a Rayleigh-flat block-fading channel,
are received by the BS and then quantized with two low-resolution
ADCs on each receive antenna (totaling M = 2M̃ quantizers), for
subsequent processing. The complex data vector that cascades the in-
formation collected over L transmission periods, after the conversion
from complex to real domain of the quantities involved, y ∈ RML×1,
is given by:

y = Xh + n, (1)

where X ∈ RML×MK contains the information transmitted in the
training sequence, h ∈ RMK×1 denotes the wireless channel coeffi-
cients, and n ∈ RML×1 corresponds to the the additive noise vector,
with entries that follow a circularly symmetric white Gaussian proba-
bility density function (p.d.f.) with zero mean and variance σ2.

The ADC is represented by a finite-precision quantizerQ that op-
erates on the received vector, such that r = Q (y). The entries of
the quantized data vector belong to the alphabet A, which elements,
rj , corresponds to the labels of a uniform symmetric mid-riser type
quantizer [11]:

rj ∈
{(
−2b

2
− 1

2
+ k

)
∆; k = 1, . . . , 2b

}
, (2)

where ∆ is the quantizer step size and b is the number of quantization
bits. Here the lower and upper quantization thresholds are:

rlo
j =

{
rj − ∆

2
, for rj ≥ −∆

2

(
2b − 2

)
−∞, otherwise

(3)

and

rup
j =

{
rj + ∆

2
, for rj ≤ ∆

2

(
2b − 2

)
+∞, otherwise.

(4)

3. DECOUPLED CHANNEL ESTIMATION

3.1. ML Estimation and EM Algorithm

The maximum a posteriori (MAP) estimate of the channel vetor h,
denoted by ĥ, is given by:

ĥ = arg max
h∈RMK

L (h). (5)

Considering that pr,h(r,h) is the joint probability density function
(p.d.f.) of r and h, then L (h) = ln pr,h(r,h) denotes the log-
likelihood function. However, a closed-form solution for this max-
imization is not available. An alternative way is to employ the EM
algorithm, which by exploiting the statistics of the hidden vector y,
offers effective ways to iteratively perform this maximization. Rec-
ognizing that the conditional p.d.f. of y given r is distributed as
py|h = N

(
Xh, σ2IML

)
and that the quantizer can be represented

by the conditional probability mass function given by ID(r)(y), where
D(r) =

(
y ∈ RML

∣∣ rlo
i ≤ yi ≤ rup

i ; ∀i ∈ {1, . . . ,ML}). As a re-
sult, the joint p.d.f. of r,y and h is given by:

pr,y,h(r,y,h) = pr|y,h(r|y,h)py|h(y|h)ph(h)

= ID(r)(y)
1(

2π
1
2 σ
)KM exp

(
−
‖y −Xh‖22

2σ2

)
ph(h). (6)

The EM algorithm computes in the lth iteration the expectation of
the MAP log-likelihood function

q
(
h, ĥ(l)

)
= Ey|r,ĥ(l)

[
ln pr,y,h(r,y,h)

]
, (7)

were ĥ(l) represents the current estimate of h. The maximization of
this expectation with respect to h results in the new estimate, ĥ(l+1),
to be used in the next iteration of the algorithm:

ĥ(l+1) = arg max
h∈RMK

q
(
h, ĥ(l)

)
. (8)

3.2. Decoupled EM-based ML Estimation

The proper choice of the training signal can lead to significant simpli-
fication of the estimation algorithm aforementioned. A training signal
composed by pilot symbols temporally multiplexed, described as

X =
√
PT
[
IMK IMK · · ·

]T
, (9)

was considered, where the power of the pilot symbols is denoted by
PT , and X ∈ RML×MK is composed by the concatenation of nT =
L
K

identity matrices. By this choice of construction, nT ∈ N∗ is a re-
quirement and corresponds to the number of pilot symbols associated
to each hi of h. By considering this choice of training sequence and
admitting independent noise vector components, the transformation
of the MIMO channel estimation problem into a series of MK paral-
lel SISO channels is straightforward. In order to accomplish this, the
permutation matrix, P conveniently reorders the entries of y. First,
consider Ph1 , with dimension MKnT × nT , that operates to group
the elements of y associated to h1:

Ph1 =
[
e

(MK)
1 e

(MK)
2 . . . e

(MK)
nT

]
, (10)

where e
(MK)
k , k ∈ {1, 2, . . . , nT } is a unit vector of length MKnT

with 1 in position kMK and 0 elsewhere. Subsequently, defining
Phi = circshift(Ph1 , i), i ∈ {1, 2, ...,MK}, theMKnT×MKnT
full permutation matrix P is given by:

P =
[
Ph1 Ph2 . . . PhMK

]T
. (11)

The permutation performs a fixed reordering pattern that operates
on the unquantized y to produce yd = Py or, interchangeably, on the
observation r, resulting in rd, which has the form:

rd =
[
rd1 . . . rdMK

]T
= Pr = Q(PXh + Pn), (12)

where the quantized data, rdi ∈ AnT , depends only on the ith channel
component, as given by:

rdi = Q(PhiXh + Phin) = Q
(√

PThi + Phin
)

(13)

where hi = hi1nT and 1nT is the vector of length nT with unit
entries.

Using (6), EM algorithm can be further developed. In the
(l + 1)th iteration, the estimate of h is calculated as:

ĥ(l+1) = arg min
h∈RMK

‖Xh− ŷ‖2 − σ2 ln ph(h)

= arg min
h∈RMK

√
PT
∑
i

∥∥∥hi1nT − ŷdi

∥∥∥2

− σ2
∑
i

ln phi(hi)

(14)

where ŷdi = E
ydi |r

d
i ,ĥ

(l)
i

[
ydi
]
.

Choosing an uninformative p.d.f. of hi, only the first summation
is taken into consideration in (14). Thus, the determination of hi cor-
responds to an ML problem, in which in the first step, ŷdi is calculated
as:

ŷdi =
√
PT ĥ

(l)
i

− σ√
2π
· e
−

(
r

up
i

−
√
PT ĥ

(l)
i

)2

2σ2 − e−
(
rlo
i −
√
PT ĥ

(l)
i

)2

2σ2

Φ

(
r

up
i −
√
PT ĥ

(l)
i

σ

)
− Φ

(
rlo
i−
√
PT ĥ

(l)
i

σ

) , (15)
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where h
(l)
i = 1nT h

(l)
i , and (rupi , rloi ) ∈ RnT contain elements that

are, respectively, the upper bounds and lower bounds of the segments
in which the entries of rdi belong. In the following, the ML estimate
is calculated as:

ĥ
(l+1)
i =

(
PT1

T
nT 1nT

)−1√
PT1

T
nT ŷ

d
i

=
1

nT
√
PT

tr
[
Diag

(
ŷdi

)]
, i = 1, 2, . . . ,MK (16)

The thresholds are chosen to minimize the estimation error. The
lower bound for the estimation error of an unbiased estimator, given
by the CRLB is related to the Fisher information matrix, J(h), as
Eh

[
(h− ĥ)(h− ĥ)T

]
� (J(h))−1. In turn, J(h) is given by:

J(h) = Er|h
[
∇h ln pr,h(r,h)∇T

h ln pr,h(r,h)
]
. (17)

The ith diagonal element of J(h), denoted Ji(hi), is calculated
as:

Ji(hi) =
nTPT
2πσ2

2b∑
j=1

[
e
−

(rup
j

−
√
PT hi)

2

2σ2 − e−
(rlo
j−
√
PT hi)

2

2σ2

]2

Φ

(
r

up
j −
√
PT hi

σ

)
− Φ

(
rlo
j−
√
PT hi

σ

) .

(18)
In the low SNR regime (σ �

√
PT |hi|), (18) is approximated by:

Ji =
nTPT
2πσ2

2b∑
j=1

[
e
−

(rup
j )2

2σ2 − e−
(rlo
j )2

2σ2

]2

Φ

(
r

up
j

σ

)
− Φ

(
rlo
j

σ

) . (19)

From this approximation, the lower bound for the minimum esti-
mation error in low SNR is solely dependent of the quantizer charac-
teristics.

In Fig. 1 the normalized mean square error (NMSE) of the EM-
ML channel estimation is shown, considering 2 and 3-bit quantizers
with fixed step size ∆opt chosen to maximize (19), as a function of

SNR =
PT E
[
h2
i

]
σ2 . The channel matrix to be estimated is comprised

by entries drawn from a Gaussian distribution with zero mean and unit
variance. The NMSE is calculated as

NMSE =
1

KM

∥∥h− ĥ
∥∥2∥∥h∥∥2 . (20)

The curves therein are non-monotonic and, moreover, achieve a
minimum normalized mean estimation error for a certain SNR value
and then experience a steep increase of the estimation error for greater
SNR values, diverging from the estimator based on unquantized data.

4. FEEDBACK-CONTROLLED ESTIMATION WITH
DITHERING

As shown in Fig. 1, the approximation (19) used to determine the
quantizer step size employed in the EM-ML estimator resulted in a
small gap in terms of NMSE to the estimation based on unquantized
data in low SNR regime. On the other hand, the use of (19) degraded
the estimator performance for high SNR values. As seen in (18), in
this SNR region the step size that would maximize the Fisher infor-
mation matrix (here referred as the optimum step size) is channel de-
pendent.

In order to overcome this characteristic of quantized systems, a
parameter estimation strategy is developed here to address the chan-
nel dependency on the quantizer. To accomplish this goal, an offset
in ydi is introduced; moreover, making this offset sufficiently close to
hi would make the assumption σ �

√
PThi valid and therefore (18)

becomes independent of channel power through a wider SNR range.
This offset is subtracted from ydi in a feedback branch and the result
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unquantized

2-bit quantization

3-bit quantization
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nT = 2500

Fig. 1. Normalized mean square error of EM-ML estimator. M = 4,
K = 4, ∆opt = 0.705 (2-bit), and ∆opt = 0.485 (3-bit), for L =
1× 103 and L = 1× 104.

is the input of the second step of the algorithm, turning the EM-ML
estimator insensitive to the channel parameter for any SNR region.
This kind of feedback controlled estimation algorithm was proposed
in [10], where the performance loss to the unquantized-data based es-
timation in terms of the CRLB was shown to be constant.

Here the proposed feedback-controlled estimation algorithm tries
to turn the performance loss to the unquantized data constant and also
minimum by means of the use of an offset that turns the Fisher in-
formation channel independent as depicted in (19) which allows the
computation of optimum step size for any SNR region.

The offset αi is the multiplication the initial estimate of hi by√
PT . This estimate, identified by ĥini

i , is obtained by an algorithm that
can produce a sufficiently close estimate of hi, turning the optimum
quantizer step size constant and independent of the channel parame-
ters. Due to the straighforward implementation and good performance
of EM-ML strategy, this approach is considered as the estimation al-
gorithm to produce αi. EM-ML estimation performance displayed in
Fig. 1 shows the existence of an SNR value for which the NMSE is

minimum, denoted SNRα, and a noise variance σ2
α =

PT E
[
h2
i

]
SNRα

. In
order to the algorithm to produce the best possible offset, considering
the estimation operating at a given SNR value dithering can be ap-
plied to ydi so that the resulting SNR becomes SNRα. In such case,
an addition of noise signal, with p.d.f. given by:

pwi(wi) =

{
N
(
0, σ2

dith

)
, SNR > SNRα

I{0}(wi), otherwise
(21)

is added to ydi producing at the input of the quantizer ydith
i =√

PThi1nT + ni + wi, and σ2
dith = σ2

opt − σ2
cur. After the first

phase of EM-ML, αi is the output and the negative feedback branch
produces yαi = ydith

i − αi1nT , which is such that pyαi |αi(y
α
i |αi) is

approximately zero-mean, and then adequate to be the input of the
second phase of EM-ML algorithm, that will produce an estimate of
the residual ĥαi . Finally, the refined estimate of hi, ĥi, is obtained as:

ĥi = ĥini
i + ĥαi . (22)

The proposed feedback-controlled EM-ML estimation algorithm
(FC-EM-ML) is summarized in Algorithm 1.

5. NUMERICAL RESULTS

In order to evaluate the proposed algorithm shown in the previous
section, the uplink of a multiuser MIMO system is considered where
the BS is equipped with M̃ = 64 transmit antennas receiving time-
multiplexed pilots symbols from K = 64 single-antenna users. The
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Fig. 2. Block diagram of the proposed estimation strategy.

Algorithm 1 FC-EM-ML estimation algorithm

Input: PT , σ2, SNRα, nT , ĥ(0), P
Output: ĥ
1: procedure DECOUPLEDESTIMATION
2: Reorder y to obtain ydi , as given by P.

3: Determine thresholds {rlo
j , r

up
j }

2b

j=1 that minimize (19).
4: if SNR > SNRα then . Dithering
5: wi ∼ N (0, σ2

dith)
6: else
7: wi = 0
8: end if
9: ydith

i = ydi +wi
10: ri = Q(ydith

i ) . Phase 1

11: ĥini
i ← EXPMAX(rupi , rloi , σ

2, PT , nT , ĥ
(0)
i )

12: yαi = ydi −
√
PT ĥ

ini
i 1nT

13: rαi = Q(yαi ) . Phase 2
14: ĥαi ← EXPMAX(rupα,i, r

lo
α,i, σ

2, PT , nT , 0)

15: ĥi = ĥini
i + ĥαi

16: return ĥi
17: end procedure
18:
19: function EXPMAX(rupi , rloi , σ

2, PT , nT , ĥ
(l=0)
i )

20: ε =∞
21: while ε ≥ εmax do
22: Calculate ŷdi as given in (15). . Expectation step

23: ĥ
(l+1)
i = 1

nT
√
PT

tr
[
Diag

(
ŷdi

)]
. Maximiz. step

24: ε = |ĥ(l+1)
i − ĥ(l)

i |
25: l = l + 1
26: end while
27: return ĥ(l+1)

i
28: end function

matrix H to be estimated models as a Rayleigh block fading chan-
nel, and comprises elements drawn from a real zero-mean and unit-
variance Gaussian distribution. The estimation strategy was evaluated
under different configurations, for 2-bit and 3-bit quantizers and vary-
ing the number of transmitted pilots: nT = 250 and nT = 2,500,
resulting in L = 16,000 and L = 160,000 time-multiplexed pilot
transmissions, respectively. The numerical results displayed herein
are the outcome of 1,000 Monte Carlo runs, and the channel estima-
tion performance is measured in terms of the NMSE.

Regarding the settings of the proposed FC-EM-ML algorithm,
the initial guess of first-step EM-ML algorithm is set as ĥ(0)

i =
1

nT
√
PT

tr [Diag (ri)] , i = 1, 2, . . . ,MK. Also, SNRα is set to

0 dB for 2-bit quantizers, whereas in the 3-bit quantization case,
SNRα is equal to 4 dB and 2 dB for nT = 250 and nT = 2500,
respectively. As in the EM-ML estimator, the fixed step sizes are
evaluated to maximize (19), and resulted ∆opt = 0.705 (2-bit) and
∆opt = 0.485 (3-bit). Here, the performance of FC-EM-ML is com-
pared with the Bussgang Minimum Mean Square Error (BMMSE)
channel estimator [3], the Expectation Maximization Generalized
Approximated Message Passing (EM-GAMP) estimator [12], and
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EM-MAP - 2-bit
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EM-GAMP - 2-bit
EM-GAMP - 3-bit
FC-EM-ML - 2-bit
FC-EM-ML - 3-bit
unquantized

Fig. 3. Normalized mean square error of estimation algorithms.
M = 4, K = 4, ∆opt = 0.705 (2-bit), and ∆opt = 0.485 (3-bit),
for L = 16× 103.
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BMMSE - 3-bit
EM-MAP - 2-bit
EM-MAP - 3-bit
EM-GAMP - 2-bit
EM-GAMP - 3-bit
FC-EM-ML - 2-bit
FC-EM-ML - 3-bit
unquantized

Fig. 4. Normalized mean square error of estimation algorithms.
M = 4, K = 4, ∆opt = 0.705 (2-bit), and ∆opt = 0.485 (3-bit),
for L = 16× 104.

the EM-MAP estimator. Finally, Figs. 3 and 4 depict the proposed
feedback-controlled estimation algorithm performance in terms of
NMSE as a function of SNR.

It can be seen that FC-EM-ML outperforms state-of-the-art ap-
proaches. Unlike EM-MAP and EM-GAMP estimators, the NMSE
curves for both 2-bit and 3-bit quantizers are monotonically decreas-
ing functions of the SNR. Moreover, the curves present slopes similar
to those observed for estimation based directly on unquantized obser-
vations, for both numbers of pilots. Thus, the proposed algorithm can
achieve constant and very small loss to the unquantized signal esti-
mates, even in high SNR.

6. CONCLUSION

In this work, a MIMO channel estimation algorithm for few-bit quan-
tized observations is proposed. The strategy is based on the double
execution of EM-MAP algorithm, in which the result of the first stage
generates an offset correction of the data to be inputted in the second
stage, and then produce the final estimate. This makes the optimum
step size that maximize the Fisher information to depend only on the
quantizer characteristics, allowing its prior calculation for any SNR.
Results show that the gap to the ideal case in terms of NMSE is main-
tained very small and constant even in the high SNR region.
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