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ABSTRACT
Large-scale multiple-antenna systems have been identified as a
promising technology for the next generation of wireless systems.
However, by scaling up the number of receive antennas the energy
consumption will also increase. One possible solution is to use
low-resolution analog-to-digital converters at the receiver. This pa-
per considers large-scale multiple-antenna uplink systems with 1-bit
analog-to-digital converters on each receive antenna. Since oversam-
pling can partially compensate for the information loss caused by
the coarse quantization, the received signals are firstly oversampled
by a factor M. We then propose a low-resolution aware linear min-
imum mean-squared error channel estimator for 1-bit oversampled
systems. Moreover, we characterize analytically the performance
of the proposed channel estimator by deriving an upper bound on
the Bayesian Cramér-Rao bound. Numerical results are provided to
illustrate the performance of the proposed channel estimator.

Index Terms— Large-scale multiple-antenna systems, 1-bit
quantization, oversampling, channel estimation, Bayesian CRB

1. INTRODUCTION

With a large number of receive antennas at the base station (BS)
massive multiple-input-multiple-output (MIMO) systems can sig-
nificantly increase the spectral efficiency, mitigate the propagation
loss caused by channel fading, reduce the inter-user-interference and
have many other advantages as compared to current systems [1, 2].
Despite all these benefits, massive MIMO has brought some chal-
lenges. For example, by using current high-resolution analog-to-
digital converters (ADCs) for each element of the antenna arrays
at the BS the hardware cost and the energy consumption may be-
come prohibitively high. To address this challenge, low-cost and
low-resolution ADCs are promoted.

Many works have studied massive MIMO systems with low-
resolution ADCs (e.g. 1-3 bits) at the front-end. The authors in
[3, 4, 5] have investigated the uplink performance by multiple-user
(MU) massive MIMO systems using ADCs with only a few bits of
resolution. Millimeter-Wave (mmWave) massive MIMO systems are
favorable candidates for the next generation cellular systems. The
major benefit is that they can achieve much larger bandwidths. The
authors in [6, 7, 8] have discussed channel estimation, signal detec-
tion, achievable rate and precoding techniques for mmWave massive
MIMO systems with low-resolution ADCs at the radio frequency
(RF) chains. As one extreme case, 1-bit ADCs can dramatically
decrease the energy consumption of the receiver. Recent studies in-
clude precoding [9], channel estimation [10], capacity analysis [11]
and iterative detection and decoding (IDD) techniques [12]. In or-
der to mitigate the performance loss caused by coarse quantization,

oversampling is a common used technique, where the received sig-
nal is sampled at a rate faster than the Nyquist rate [13]. The work in
[14] has proposed an oversampling technique to obtain better mul-
tiuser interference suppression and error rate performance. To fur-
ther reduce the computational complexity caused by the inversion of
a large matrix in oversampled system, a sliding window based linear
detection is proposed in [15].

Currently, channel estimation is a known problem that limits
the performance of 1-bit ADCs systems. In this paper, we investi-
gate channel estimation techniques for uplink 1-bit and oversampled
MIMO systems. One essential and unique aspect of our proposed
channel estimator is that oversampling is taken into account, which
can significantly improve the performance. In particular, we develop
a low-resolution aware (LRA) linear minimum mean-squared error
(LMMSE) channel estimator for 1-bit oversampled systems based on
the Bussgang decomposition. Unlike the proposed channel estima-
tor in [16], we consider the correlation of the filtered noise, which is
important for the oversampled system. We also examine the funda-
mental estimation limits by deriving a Bayesian framework for both
non-oversampled and oversampled systems.

The rest of this paper is organized as follows: Section 2 shows
the system model and gives some statistical properties of 1-bit quan-
tization. Section 3 illustrates the Bayesian information for 1-bit
non-oversampled and oversampled MIMO systems and gives a short
derivation of the proposed oversampling based LRA-LMMSE chan-
nel estimator. In section 4, the simulation results are presented and
section 5 concludes the paper.

The following notations are used: matrices are in bold capital
letters while vectors in bold lowercase. In denotes n × n identity
matrix. 0n is a n×1 all zeros column vector. Additionally, diag(A)
is a diagonal matrix only containing the diagonal elements of A. The
vector or matrix transpose and conjugate transpose are represented
by (·)T and (·)H , respectively. [·]k represents the kth element of
the corresponding vector. (·)R and (·)I gets the real and imaginary
part from the corresponding vector or matrix, respectively. ⊗ is the
Kronecker product and det(·) is the determinant function.

2. SYSTEM MODEL

We consider the uplink of a single-cell multi-user large-scale
multiple-antenna system, which is shown in Fig. 1. At the transmit-
ter side there are Nt single-antenna terminals, whereas Nr receive
antennas are employed at the BS. For the large-scale MIMO system
we have Nr � Nt. With perfect synchronization the received
oversampled signal y ∈ CMNrN×1 can be expressed as

y = Hx + n, (1)
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Fig. 1: System model of multi-user multiple-antenna system with 1-bit ADCs and oversampling at the receiver

where x ∈ CNNt×1 contains independent identically distributed
(i.i.d.) transmitted symbols from Nt terminals, each with block
length N . Each symbol has unit energy so that E{x2

k} = 1. The
vector n represents the filtered oversampled noise expressed by

n = (INr ⊗G)w (2)

with w ∼ CN
(
03MNrN , σ

2
nI3MNrN

)
. Note that the noise sam-

ples are described such that each entry of n has the same statistical
properties. Since the receive filter has a length of 2MN + 1 sam-
ples, 3MN unfiltered noise samples in the noise vector w need to be
considered for the description of an interval of MN samples of the
filtered noise n. G ∈ RMN×3MN is a Toeplitz matrix that contains
the coefficients of the matched filter m(t) at different time instants:

G =


m(−NT ) m(−NT + 1

M
T ) . . . m(NT ) 0 . . . 0

0 m(−NT ) . . . m(NT − 1
M
T ) m(NT ) . . . 0

...
...

. . .
...

...
. . .

...
0 0 . . . m(−NT ) m(−NT + 1

M
T ) . . . m(NT )

 .
(3)

T is the symbol period and M denotes the oversampling rate. The
equivalent channel matrix H is described as

H = (INr ⊗ Z)U
(
H′ ⊗ IN

)
, (4)

where H′ ∈ CNr×Nt is the channel matrix for non-oversampled
system and U is an oversampling matrix, which can be calculated as

U = INrN ⊗ u = INrN ⊗ [0 · · · 0 1]T1×M . (5)

Z ∈ RMN×MN is a Toeplitz matrix that contains the coefficients of
z(t) at different time instants, where z(t) is the convolution of the
pulse shaping filter p(t) and the matched filter m(t), and is given by

Z =


z(0) z( T

M
) . . . z(NT − 1

M
T )

z(− T
M
) z(0) . . . z(NT − 2

M
T )

...
...

. . .
...

z(−NT + 1
M
T ) z(−NT + 2

M
T ) . . . z(0)

 .
(6)

In particular, M = 1 refers to the non-oversampling case.
Let Q(·) represent the 1-bit quantization function, the resulting

quantized signal yQ is

yQ = Q (y) = Q(yR) + jQ(yI). (7)

The real and imaginary part of y are element-wisely quantized to
{± 1√

2
} based on the sign.

Since quantization strongly changes the properties of signals,
some statistical properties of quantization for a Gaussian input signal
will be shown. For 1-bit quantization and Gaussian inputs, the cross-
correlation between the unquantized signal s with covariance matrix
Cs and its 1-bit quantized signal sQ is described by [17]

CsQs =

√
2

π
KCs,where K = diag(Cs)

− 1
2 . (8)

Furthermore, the covariance matrix of the 1-bit quantized signal sQ
can be obtained through the arcsin law [18] as follows:

CsQ =
2

π

(
sin−1

(
KCR

s K
)
+ jsin−1

(
KCI

sK
))

. (9)

3. CHANNEL ESTIMATION FOR 1-BIT MIMO

The problem of interest here is to estimate the channel parameters
in H′ from the received quantized signal yQ. In the following, we
firstly derive the Bayesian Cramér-Rao bound (CRB) in terms of
the Bayesian information for both non-oversampled and oversam-
pled systems. Thereafter, we make a short derivation of the proposed
oversampling based LRA-LMMSE channel estimator.

Through vectorization, the received signal in (1) is

y = (xT ⊗ INrNM )vec(H) + n

= [xT ⊗ INr ⊗ Z(IN ⊗ u)]vec(H′ ⊗ IN ) + n.
(10)

To further simplify vec(H′ ⊗ IN ), we have

vec(H′ ⊗ IN ) =

[INt ⊗ (e1 ⊗ INr ⊗ e1 + · · ·+ eN ⊗ INr ⊗ eN )] vec(H′),
(11)

where en represents an all zeros column vector except for the nth
element which is one. Then (10) can be summarized as

y = Φvec(H′) + n = Φh′ + n, (12)

where Φ is the equivalent transmit matrix. The channel parameters
in h′ are assumed to be random complex Gaussian distributed with
zero mean and covariance matrix Ch′ .

3.1. Bayesian Bounds on Channel Estimation

We rewrite the complex-valued system (12) in the following real-
valued form [

yR

yI

]
=

[
ΦR −ΦI

ΦI ΦR

] [
h′
R

h′
I

]
+

[
nR

nI

]
. (13)

Considering the unknown parameter vector h̃′ = [h′
R
;h′

I
], since

the real and imaginary parts are independent, the Bayesian informa-
tion matrix (BIM) [19] is defined as

JyQ(h̃
′) = JyR

Q
(h̃′) + JyI

Q
(h̃′), (14)

where

[J
y
R/I
Q

(h̃′)]ij = E
y
R/I
Q ,h̃′

{
∂ ln p(y

R/I
Q , h̃′)

∂[h̃′]i

∂ ln p(y
R/I
Q , h̃′)

∂[h̃′]j

}
,

(15)
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with [h̃′]i and [h̃′]j being the elements of h̃′ and JyQ(h̃
′) is ar-

ranged as follows:

JyQ(h̃
′) =

[
[JyQ(h̃

′)]RR [JyQ(h̃
′)]RI

[JyQ(h̃
′)]IR [JyQ(h̃

′)]II

]
. (16)

Eq.(15) can be divided into two parts

[J
y
R/I
Q

(h̃′)]ij = [JD
y
R/I
Q

(h̃′)]ij + [JP
y
R/I
Q

(h̃′)]ij , (17)

where

[JD
y
R/I
Q

(h̃′)]ij , E
y
R/I
Q |h̃′

{
∂ ln p(y

R/I
Q | h̃′)

∂[h̃′]i

∂ ln p(y
R/I
Q | h̃′)

∂[h̃′]j

}
(18)

and

[JP
y
R/I
Q

(h̃′)]ij , Eh̃′

{
∂ ln p(h̃′)

∂[h̃′]i

∂ ln p(h̃′)

∂[h̃′]j

}
. (19)

To transform the real value h̃′ back to the complex domain h′, we
apply the chain rule to get:

JyQ(h
′) =

1

4

(
[JyQ(h̃

′)]RR + [JyQ(h̃
′)]II

)
+
j

4

(
[JyQ(h̃

′)]RI − [JyQ(h̃
′)]IR

)
.

(20)

The variance of the LMMSE estimator ĥ′(yQ) is lower bounded by

var[ĥ′i(yQ)] ≥ [J−1
yQ(h

′)]ii. (21)

3.1.1. BIM for Non-oversampled Systems

For non-oversampled systems, i.e. M = 1, the covariance matrix of
the equivalent noise vector n is Cn = σ2

nINNr . Since n is white
noise, the conditional log-likelihood function can be expressed as

ln p(yQ | h̃′) =
NNr∑
k=1

[
ln p([yRQ]k | [h̃′]k) + ln p([yIQ]k | [h̃′]k)

]

=

NNr∑
k=1

lnQ

(
−
√
2[yRQ]k

[ΦRh′
R −ΦIh′

I
]k

σn/
√
2

)

+

NNr∑
k=1

lnQ

(
−
√
2[yIQ]k

[ΦIh′
R
+ ΦRh′

I
]k

σn/
√
2

)
,

(22)
where Q(x) = 1√

2π

∫∞
x

exp(−u
2

2
)du. Inserting (22) into (18) we

obtain

[JDyQ(h̃
′)]ij = −E

{
∂2 ln p(yQ | h̃′)
∂[h̃′]i∂[h̃′]j

}
= [JDyR

Q
(h̃′)]ij+[JDyI

Q
(h̃′)]ij .

(23)
With the assumption h̃′ is Gaussian distributed with zero mean and
covariance matrix Ch̃′ =

1
2
I2 ⊗Ch′ , ln p(h̃′) yields

ln p(h̃′) = −1

2
NrNt ln

[
(2π)2NrNt det(Ch̃′)

]
− 1

2
h̃′
T
C−1

h̃′
h̃′

(24)
and inserted into (19) we obtain

JPyQ(h̃
′) = 2JP

y
R/I
Q

(h̃′) = 2C−1

h̃′
. (25)

The BIM is the summation of (23) and (25) as described by

JyQ(h̃
′) = JDyQ(h̃

′) + JPyQ(h̃
′). (26)

3.1.2. BIM for Oversampled Systems

When M ≥ 2 the equivalent noise vector n consists of colored
Gaussian noise samples. Computing p(yR/IQ | h̃′) requires the or-
thant probabilities, which are not available or too difficult to com-
pute. The authors in [20] have given a lower bound of JD

y
R/I
Q

(h̃′),

which is based on the first and second order moments

JD
y
R/I
Q

(h̃′) ≥

(
∂µ

y
R/I
Q

∂h̃′

)T
C−1

y
R/I
Q

(
∂µ

y
R/I
Q

∂h̃′

)
= J̃D

y
R/I
Q

(h̃′).

(27)
Since the lower-bounding technique is identical to the real and the
imaginary part, we present only the derivation of J̃D

yR
Q
(h̃′). Based

on [21], the mean value of the kth received symbol is given by

[µyR
Q
]k =

1√
2
p
(
[yRQ]k = +1 | h̃′

)
− 1√

2
p
(
[yRQ]k = −1 | h̃′

)
=

1√
2

[
1− 2Q

(
[ΦRh′

R −ΦIh′
I
]k√

[Cn]kk/2

)]
,

(28)
The derivative of (28) is

∂[µyR
Q
]k

∂[h̃′]i
=

2exp
(
− [ΦRh′R−ΦIh′I ]2k

[Cn]kk

)
∂[ΦRh′R−ΦIh′I ]k

∂[h̃′]i√
2π[Cn]kk

. (29)

The diagonal elements of the covariance matrix are given by

[CyR
Q
]kk =

1

2
− [µyR

Q
]2k, (30)

while the off-diagonal elements are calculated as

[CyR
Q
]kn = p(zk > 0, zn > 0) + p(zk ≤ 0, zn ≤ 0)

− 1

2
− [µyR

Q
]k[µyR

Q
]n,

(31)

where [zk, zn]
T is a bi-variate Gaussian random vector[

zk
zn

]
∼ N

([
[ΦRh′

R −ΦIh′
I
]k

[ΦRh′
R −ΦIh′

I
]n

]
,
1

2

[
[Cn]kk [Cn]kn
[Cn]nk [Cn]nn

])
.

The lower bound for the imaginary part is derived in the same way.
With the calculations above we get the lower bound of the BIM as

JyQ(h̃
′) ≥ J̃DyQ(h̃

′) + JPyQ(h̃
′), (32)

where the equality holds for M = 1 [21]. Based on (21), the inverse
of this BIM lower bound will result in an upper bound of the actual
Bayesian CRB for the oversampled systems.

3.2. Oversampling based LRA-LMMSE Channel Estimation

In the uplink transmission phase, each block can be divided into two
parts: one for training and the other for data transmission. During the
training, all terminals simultaneously transmit their pilot sequences
of τ symbols to the BS, which yields

yQp = Q(Φph
′ + np) = Φ̃h′ + ñp, (33)

where Φ̃ = ApΦp and ñp = Apnp + nq . The vector nq is the sta-
tistically equivalent quantizer noise. The matrix Ap is the Bussgang
based linear operator chosen independently from yp:

Ap = CH
ypyQp

C−1
yp

=

√
2

π
diag

(
Cyp

)− 1
2 , (34)
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where CypyQp
= E{ypyHQp

} denotes the cross-correlation ma-
trix between the received signal yp and the quantized signal yQp .
Cyp = E{ypyHp } is the auto-correlation matrix of yp given by

Cyp = ΦpCh′Φ
H
p + σ2

nINr ⊗GGH . (35)

Based on the statistically equivalent linear model (33), the proposed
oversampling based LRA-LMMSE channel estimator is given by

ĥ′LMMSE = Ch′Φ̃
HC−1

yQp
yQp . (36)

Note that when M = 1, (36) reduces to the same as that of the
BLMMSE channel estimator in [22].

4. NUMERICAL RESULTS

This section presents simulation results of the proposed LRA-
LMMSE channel estimaton. The modulation scheme is QPSK. The
m(t) and p(t) are normalized Root-Raised-Cosine (RRC) filters
with a roll-off factor of 0.8. The channel is assumed to experi-
ence block fading and is modeled as the Kronecker model [23]

H′ = R
1
2
r H′wR

1
2
t , where Rr and Rt denote the receive and trans-

mit correlation matrices, respectively. The elements of H′w are i.i.d.
complex Gaussian random variables with zero mean and unit vari-
ance. Rt = INt by assuming that the channel of each terminal is
independent. The Rr has the following form:

Rr =


1 ρ . . . ρ(Nr−1)2

ρ 1 . . . ρ(Nr−2)2

...
...

. . .
...

ρ(Nr−1)2 ρ(Nr−2)2 . . . 1

 , (37)

where ρ is the correlation index of neighboring antennas (ρ = 0 rep-
resents an uncorrelated scenario and ρ = 1 implies a fully correlated
scenario). The pilots are column-wise orthogonal. The signal-to-
noise ratio (SNR) is defined as 10 log(Nt

σ2
n
). The normalized mean

square error (MSE) performances are illustrated in Fig.2, where
there is a 2 dB performance gain of the proposed oversampling
based LRA-LMMSE channel estimator compared to the BLMMSE
channel estimator (M = 1). Note that for the oversampled sys-
tems (M ≥ 2) the upper bound of Bayesian CRBs are higher
than the actual Bayesian CRBs, since the calculation of the actual
Bayesian CRBs are still open problems. Fig.3 shows the normalized
MSE performances as a function of pilot symbols τ . To achieve
a trade-off between MSE performance and system complexity we
have set τ = 40 in the simulation. Moreover, the symbol error
rate (SER) performances of the system with the proposed LRA-
LMMSE channel estimator and perfect channel matrix are shown in
Fig.4, where the sliding-window based LMMSE detector [15] with
window length three is applied in the system.

5. CONCLUSION

This work has proposed the oversampling based LRA-LMMSE
channel estimator for uplink massive MIMO systems with 1-bit
quantization and oversampling at the receiver. We have further
given analytical performance of the system in terms of the Bayesian
information. Simulation results have shown that the proposed over-
sampling based channel estimator outperforms the existing non-
oversampled BLMMSE channel estimator in terms of the MSE and
the SER performances.
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[21] M. Schlüter, M. Dörpinghaus, and G. P. Fettweis, “Bounds
on Channel Parameter Estimation with 1-Bit Quantization and
Oversampling,” in 2018 IEEE 19th International Workshop
on Signal Processing Advances in Wireless Communications
(SPAWC), Jun. 2018, pp. 1–5.

[22] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindle-
hurst, and L. Liu, “Channel Estimation and Performance Anal-
ysis of One-Bit Massive MIMO Systems,” IEEE Trans. Signal
Process., vol. 65, no. 15, pp. 4075–4089, Aug. 2017.

[23] Da-Shan Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn,
“Fading correlation and its effect on the capacity of multiele-
ment antenna systems,” IEEE Trans. Commun., vol. 48, no. 3,
pp. 502–513, Mar. 2000.

4673


		2019-03-18T11:17:31-0500
	Preflight Ticket Signature




