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ABSTRACT

The hardware implementation of large-scale multi-antenna
systems requires power-efficient power amplifiers (PAs).
However, the existing beamforming designs often cause a
large peak-to-average power ratio and have to rely on power-
inefficient PAs. In this paper, we propose a unified power-
efficient beamforming design framework, which incorporates
per-antenna constant envelope constraints to improve the
power efficiency. We further propose an efficient algorithm
named “sequential outer approximation procedure” (SOAP)
to search a feasible point. Power-efficient design for beam
pattern synthesis is developed based on SOAP.

1. INTRODUCTION

Large-scale multi-antenna communication systems, by em-
ploying a large number of antennas at the bases station (BS),
can significantly improve the spectral efficiency via simple
signal processing [1, 2]. On the other hand, the hardware im-
plementation of such systems requires highly power-efficient
power amplifiers (PAs), since the number of PAs usually s-
cales with that of antennas. The power efficiency (PE) of a PA
is mainly limited by the linear range of the transmitted signal,
which, however, may have a high peak-to-average power ratio
(PAPR) as a result of adapting channel conditions and mod-
ulation schemes. Consequently, traditional techniques (e.g.,
maximum ratio transmission) requiring a large linear range
for each PA inevitably lead to lower PE [3].

To facilitate the use of power-efficient and cost-effective
PAs, per-antenna constant envelope (PACE) precoding was
proposed in [3, 4] to control the PAPR. In the PACE precod-
ing, the instantaneous power of each antenna is restricted to be
a constant, irrespective of channel state information and trans-
mitted symbols. In this case, only phase variation of each an-
tenna is used to form desired signals, and thus it is possible to
use nonlinear but cheap and highly power-efficient PAs. Mo-
tivated by the advantages of PACE precoding, there has been
an upsurge of research interests in constant envelope precod-
ing for MISO and MIMO systems [4–8]. For example, in [8]

a joint transceiver design under constant envelope constraints
was recently investigated for MIMO point-to-point systems.

The works in [3–8] mainly considered precoding designs.
However, to improve the PE is not only essential in precod-
ing, but also crucial in other aspects of multi-antenna system
designs. Particularly, due to a large path-loss of mmwave sig-
nals, large antenna arrays with power-efficient beamforming
techniques are crucial in mmwave communications [9–12].
For example, since the mmwave PAs usually have lower PE,
nonlinear but highly power-efficient PAs are preferred to de-
sign training beams. The type of beams that facilitates the
use of power-efficient and cheap PAs is PACE beams. More-
over, PACE beams enable different PAs to output their max-
imal transmit powers simultaneously to increase the received
SNR, which is important in mmwave communications.

To improve the PE and facilitate the use power-efficient
PAs, we investigate beamforming designs for large-scale
multi-antenna systems in this paper. For this purpose, we
propose a unified power-efficient beamforming design frame-
work, by formulating the beamforming design as an opti-
mization problem with the goal of optimizing an interested
performance metric under the PACE constraints. However, it
is difficult to even identify a feasible point to the formulated
optimization problem. To tackle this difficulty, we propose an
efficient feasible point search method, i.e., sequential outer
approximation procedure (SOAP). An application to beam
pattern synthesis (BPS) design corroborates the excellent
performance of the SOAP method.

2. PROBLEM FORMULATION

Consider a BS equipped with a large-scale antenna array con-
sisting of N(≫ 1) antennas. The BS communicates with U
single-antenna users. To improve the performance (e.g., in-
crease the received SNR, achieve a large array gain and etc.),
the BS shall design a transmit/receive beamforming vector,
denoted by x, to process transmitted or received signals. To
improve the PE of PAs, it is desirable that the normalized
transmit power of antenna i is a constant ci [4, 5], i.e.,

|x(i)| = ci, (∀ i ∈ N ), (1)
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where N = {1, 2, · · · , N}, which guarantees that the de-
signed beamforming vector x has PACE.

In practice, it is difficult for all PAs to exactly output the
specified constant transmit power. To improve the robustness
of the beamforming design, we allow the transmit power of
the i-th antenna to vary in a small interval [ai, bi], where ai >
0, ai ≤ ci ≤ bi, and bi − ai is a small positive number.
Accordingly, the constraints in (1) are relaxed to

ai ≤
∣∣eH

i x
∣∣ ≤ bi, (i ∈ N ), (2)

where ei = (0T
i−1, 1,0

T
N−i)

T. For convenience, the con-
straints in (2) are referred to as PE constraints.

The system design goal is to maximize a certain perfor-
mance metric f(x,y) under the PE constraints and other con-
straints (e.g., QoS constraints), which can be formulated as

min
x,y

f(x,y)

gi(x,y) ≤ 0, (i ∈ I) , (3a)
s.t. hj(x,y) ≤ 0, (j ∈ J ) , (3b)

cl(x,y) ≤ 0, (l ∈ L) , (3c)

where y absorbs other optimization variables (e.g., transmit
power) and may be absent, gi (∀ i ∈ I) and hj (∀ j ∈ J )
are scalar continuously differentiable and non-convex func-
tions, and cl (∀ l ∈ L) is a convex function. Note that the
constraints in (3a) and (3b) represent different types of non-
convex constraints. Typically, the non-convex PE constraints{
ai ≤

∣∣eH
i x

∣∣ , (i ∈ N )
}

are absorbed in (3a), while the oth-
er types of non-convex constraints, e.g., QoS constraints, are
absorbed in (3b). All convex constraints, e.g., the convex PE
constraints

{∣∣eH
i x

∣∣ ≤ bi, (i ∈ N )
}

, are absorbed in (3c).
Let z = (x,y) for convenience. For simplicity, we focus

on the case where {gi(z) ≤ 0} and {hj(z) ≤ 0} are differ-
ence of convex (DC) functions, although the proposed SOAP
is still applicable to more general optimization problems. Let
{gi(z) ≤ 0} and {hj(z) ≤ 0} be DC functions, i.e., gi(z) =
pi(z) − qi(z) (i ∈ I) and hj(z) = mj(z) − nj(z) (j ∈ J ),
where pi(z), qi(z), mj(z) and nj(z) are convex functions.
Then, problem (3) can be written as

min
z

f(z)

pi(z)− qi(z) ≤ 0, (i ∈ I)
s.t. mj(z)− nj(z) ≤ 0, (j ∈ J )

cl(z) ≤ 0, (l ∈ L).

(4)

The feasible setF of problem (4) is assumed to be non-empty.
Since problem (4) is a DC programming, convex-concave

procedure (CCP) can be used to find local solutions, which,
however, requires an initial feasible point [13]. Since the
number of constraints in (4) is very large due to the large num-
ber of antennas and different types of the constraints are cou-
pled, it is difficult to even identify a feasible point to problem

(4).To remove the need for an initial feasible point, penalty-
CCP was proposed in [14]. However, as pointed out in [14],
the convergence may not be a feasible point of the original
problem. For these reasons, we develop a sequential outer
approximation procedure (SOAP) to find a feasible point.

3. SEQUENTIAL OUTER APPROXIMATION
PROCEDURE

To describe the SOAP, we first define outer approximation
(OA) sequence and OA set.

Definition 1. An OA sequence associated with the constraints
{pi(z) − qi(z) ≤ 0, (i ∈ I)} in problem (4) is defined as
U = {uk |uk ∈ R|I|, k = 1, · · · , l, l + 1, · · · } such that

u1(i) ≥ · · · ≥ ul(i) ≥ ul+1(i) ≥ · · · ≥ 0, (∀ i ∈ I).

Definition 2. An OA set associated with an element u ∈ U
(or a real vector u ∈ R|I|) is defined as

A(u) =
{
z
∣∣ pi(z)− qi(z) ≤ u(i), mj(z)− nj(z) ≤ 0,

cl(z) ≤ 0, (i ∈ I, j ∈ J , l ∈ L)
}
.

According to Definition 2, F can also be written as F =
A(0). To find a feasible point, the key of SOAP is to generate
a series of points {z1, z2, · · · , zf} such that: 1) zk does not
belong to F , i.e., zk /∈ F ; 2) zk+1 is closer to F than zk;
3) zk+1 is generated based on zk; and 4) zf finally falls into
the feasible set F . For this purpose, as shown in Fig.1, we
construct a series of OA sets {A(uk)} such that F ⊆ · · · ⊆
A(uk) ⊆ · · · ⊆ A(u2) ⊆ A(u1), i.e., {A(uk)} approximate
to F from the outside. With the OA set A(uk) available,
the point zk is obtained by choosing within A(uk) based on
zk−1. In this sequential manner, we can finally obtain the
desired point zf.
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Fig. 1. An illustration of SOAP for finding a feasible point.

The main steps of SOAP are as follows. First, we choose
a starting point s. Then, we construct OA sets and choose
points in an alternate fashion. Specifically, given the starting
point s, we construct the OA set A(u1) and choose z1 within
A(u1). Then, based on z1, we construct the OA set A(u2)
and choose z2 within A(u2). Generally, with zk available,
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we construct the OA set A(uk+1) and choose zk+1 within
A(uk+1). We repeat this procedure until reach the desired
feasible point. Next, we elaborate on this procedure.
• Choosing the Starting Point: The first step of SOAP is

to choose a starting point s from the following set:

A =
{
z
∣∣mj(z)− nj(z) ≤ 0 (j ∈ J ), cl(z) ≤ 0 (l ∈ L)

}
.

It is seen that the first type of the non-convex constraints, i.e.,
{pi(z) − qi(z) ≤ 0}, are completely relaxed in A. Because
A only contains one type of the non-convex constraints, it
is relatively easier to manipulate than F . Then, we consider
choosing a starting point from A by solving

min
s

f(s) s.t. s ∈ A. (5)

• Choosing zk+1 ∈ A(uk+1) Based on zk: To choose
the next point zk+1 based on the current point zk, we first try
to find a point z′ ∈ F based on zk. If we succeed in finding
z′, we set zf = z′ and terminate iterations. Otherwise, we
construct an OA set A1 ⊇ F and try to find a point z′ ∈ A1.
If we find the z′, we set zk+1 = z′. Otherwise, we construct
a larger OA set A2 ⊇ A1 and try to find a point z′ ∈ A2. We
repeat this procedure until find a point, which is set to zk+1.
To achieve this goal, we associate the OA sets {A(uk)} with
constants {Tk−1,i}. The constants associated with A(u1) are
{T0,i = |pi(s) − qi(s)|, i ∈ I}. Given zk ∈ A(uk) and
{Tk,i}, the operations (OPs) to find zk+1 are as follows.

Op 1: We define an integer variable e and initialize it as
0, i.e., e = 0. Then, we construct uk+1 as

uk+1(i) = Tk,i(1− 2−e) (∀ i ∈ I). (6)

Once uk+1 has been constructed, we obtain the correspond-
ing OA set A(uk+1) according to Definition 2.

Op 2: Using zk as an initial point, we try to find a point
within A(uk+1), typically, by solving

min
z

f(z)

pi(z)− qi(z) ≤ uk+1(i), (i ∈ I)
s.t. mj(z)− nj(z) ≤ 0, (j ∈ J )

cl(z) ≤ 0, (l ∈ L).

(7)

Using zk as an initial point, problem (7) can be solved via
CCP.

If we successfully find a point (e.g., z′) by solving prob-
lem (7) via CCP based on zk, we set zk+1 = z′ and Tk+1,i =
Tk,i(1 − 2−e) (∀ i ∈ I). Otherwise, we increase e (e.g.,
let e ← e + 1) and reconstruct uk+1 according to (6) and
solve the new optimization problem. For clarity, given zk and
Tk,i (i ∈ I), the algorithm to find zk+1 is summarized in Al-
gorithm 1. The algorithm to find a feasible point of problem
(4) via SOAP is summarized in Algorithm 2.

The convergence of SOAP is characterized in Theorems
1 and 2. Theorem 1 indicates that given zk ∈ A(uk), it is

Algorithm 1: Given zk and Tk,i (i ∈ I), Find zk+1

1: initialize: e = 0
2: repeat

(a) construct uk+1 according to (6), i.e.,
uk+1(i) = Tk,i(1− 2−e), (i ∈ I)

(b) construct OA set A(uk+1)
(c) solve problem (7): if zk+1 cannot be found

by solving problem (7), let e← e+ 1
until find the point zk+1 ∈ A(uk+1)

3: output: zk+1 and Tk+1,i = Tk,i(1− 2−e) (i ∈ I)

Algorithm 2: Feasible Point Search - SOAP
1: solve problem (5) =⇒ starting point s
2: let T0,i = |pi(s)− qi(s)|, z0 = s and k = 0
3: repeat

(a) find zk+1 and Tk+1,i (i ∈ I) via Algorithm 1
(b) k ← k + 1

until some termination criterion is met
4: output: feasible point zf of problem (4).

guaranteed to find the next point zk+1 ∈ A(uk+1) as long as
e is sufficiently large. Theorem 2 indicates that it is sufficient
to construct finite OA sets.

Theorem 1. Suppose that zk is a regular local minimizer
of f(z) on A(uk) and uk+1 is constructed according to (6).
Then, if e is sufficiently large, it is guaranteed to find a point
zk+1 ∈ A(uk+1) via CCP using zk as the initial point.

Theorem 2. Suppose that 1) the feasible set F of problem (4)
contains an interior point; 2) {▽qi(z),▽nj(z) | i ∈ I, j ∈
J } are continuous functions; and 3) ∀ z /∈ F , it is able to
find a point closer to F . Then, there exists finite K such that
Algorithm 2 is guaranteed to terminate for k ≥ K.

4. APPLICATION: BEAM PATTERN SYNTHESIS

4.1. Problem Statement

The goal of beam pattern synthesis (BPS) is to design a beam-
forming vector having desired beam pattern in both mainlobe
and sidelobe [15–17]. Different applications require different
problem formulations. In this section, we consider BPS for
beam alignment (BA) in mmwave communication.

To achieve a good BA performance, the synthesized beam
should have flat and large beam pattern in the mainlobe and
flat but small beam pattern in the sidelobe [11], which yields

min
x,ε

ε

ai ≤ |eH
i x| ≤ bi, (i ∈ N ) , (8a)

s.t. 1− ε ≤
∣∣aH(ψ)x

∣∣ ≤ 1 + ε, (ψ ∈ DM) , (8b)∣∣aH(ψ)x
∣∣ ≤ ε, (ψ ∈ DS) , (8c)

4651



where DM = {ψ1, ψ2, · · · } and DS = {ψ′
1, ψ

′
2, · · · } contain

the sampling points within the mainlobe and the sidelobe, re-
spectively. The constraints in (8b) and (8c) are used to control
the ripples in the mainlobe and the sidelobe, respectively. The
design goal is to minimize the maximal ripples.

Letting y = ε and casting problem (8) into problem (3),
we have the following identification

f(x,y) = (0T
N , 1)(x

T, ε)T

{gi(x,y) ≤ 0} =
{
ai ≤

∣∣eH
i x

∣∣ , (i ∈ N )
}

{hj(x,y) ≤ 0} =
{
1− ε ≤

∣∣aH(ψ)x
∣∣ , (ψ ∈ DM)

}
{cl(x,y) ≤ 0} =

{∣∣eH
i x

∣∣ ≤ bi, (i ∈ N )
}
∪{∣∣aH(ψ)x

∣∣ ≤ 1− ε, (ψ ∈ DM)
}
.

(9)

With the identification in (9), Algorithm 2 can be used to find
a feasible point to problem (8).

4.2. Numerical Results

The transmit power of each antenna is restricted to [0.9, 1.0].
Fig.2 shows the normalized beam pattern (NBP) of the initial
feasible solution (via Algorithm 2) and the stationary solu-
tion. It is seen that the feasible solution has almost the same
performance as the stationary solution, e.g., small ripples in
both mainlobe and sidelobe. Generally, the feasible solution
obtained by Algorithm 2 is not only feasible, but also possess-
es desired properties and satisfies most applications.
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Fig. 2. The NBP of the initial feasible solution and the sta-
tionary solution.

The normalized per-antenna transmit power (NPTP) de-
fined as 10 log

(
|x(i)|/max{|x(i)|}

)
and NBP of the beams

designed by different methods is shown in Fig.3. For compar-
ison, the beams designed with the LS method [10], the BMW-
SS method [18], and the BPSA [11] are shown as well. It is
seen from Fig.3-(a) that BPSA obtains the best performance
in terms of suppressing the ripples in both mainlobe and side-
lobe. Compared to BPSA, SOAP is inferior in ripple suppres-
sion. The reason is that the PACE constraints are imposed in
SOAP. On the other hand, it is seen from Fig.3-(b) that the
SOAP beam has the smallest difference in per-antenna trans-
mit power, and thus its PAPR is also minimal. Though for the
BMW-SS beam, the transmit power of the 32 active antennas
is the same, the remaining antennas are inactive. Note that
deactivating antennas is not a good approach for the design of
wider beams, since it will lead to some loss in array gain.
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Fig. 3. The NBP and NPTP of the beams designed with dif-
ferent methods - N = 64.
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Fig. 4. The magnitude of the ripples (i.e., ε) of BPSA and
SOAP beams for varying numbers of antennas.

The magnitude of the ripples of the beams designed with
BPSA and SOAP for varying numbers of antennas are shown
in Fig.4. It is seen that the gap of the magnitude of the ripples
between the BPSA and SOAP beams becomes smaller, as the
number of antennas increases. In particular, when N ≥ 160,
the magnitude of the ripples of the SOAP beam is close to
that of the BPSA beam. The reason is that more antennas pro-
vide more degrees of freedom, which can be fully utilized by
SOAP. Consequently, the performance loss due to the PACE
constraints becomes negligible for large-scale antenna arrays.

5. CONCLUSION

We proposed a unified power-efficient beamforming design
framework and devised the SOAP to search feasible points.
Power-efficient design for beam pattern synthesis was devel-
oped based on the SOAP. Simulations verified the excellent
performance of SOAP and revealed some important insights.
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