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ABSTRACT
Compressed sensing (CS)-based beam alignment is a promising so-
lution for rapid link configuration in millimeter wave (mmWave)
systems that use large arrays. Translating CS to practical mmWave
radios, however, can be challenging due to carrier frequency offset
(CFO). Standard sparse recovery techniques that use random sam-
pling strategies to acquire channel measurements can fail even if
there is a slight mismatch in carrier frequencies. In this paper, we
show that restricting the randomness in compressive sampling to lo-
cal sets can achieve robustness to structured errors due to CFO. The
proposed approach requires fewer channel measurements than com-
parable algorithms and has the same complexity as standard CS.

Index Terms— Robust beamforming, mm-Wave, carrier fre-
quency offset, robust compressed sensing

1. INTRODUCTION

Next generation wireless systems will exploit the large amount of
spectrum available at mmWave carrier frequencies [1]. Although
today’s circuit technology can support communication at mmWave,
it comes with a lot of challenges from a signal processing perspec-
tive. For example, the use of fewer number of radio frequency (RF)
chains than antennas results in limited access to the radio channel
[2]. The phased antenna array with a single RF chain is one exam-
ple of an hardware architecture that is commonly used at mmWave
[3]. Using a phased array, the transmitter (TX) and the receiver (RX)
can perform directional transmission and reception by appropriately
configuring their phase shifters [2]. The objective of beam alignment
is to determine the best phase shift configurations at the TX and the
RX that maximize the received SNR [3]. Unfortunately, standard
exhaustive scan-based beam alignment, in which the TX and the RX
scan all potential directions in the channel, incurs substantial training
overhead in mmWave systems with large arrays [4].

Compressive sensing recovers a sparse signal from fewer lin-
ear measurements of the signal compared to its dimension [5]. As
mmWave channels are sparse in a well-chosen dictionary, CS has
been extensively applied for faster mmWave channel estimation and
beam alignment [6][7]. Most of the existing CS-based techniques,
however, assume that CFO has been perfectly corrected. Such an
assumption may not be valid in typical mmWave settings as perfect
CFO correction can be hard due to low SNR prior to initial beam-
forming [2]. CS-based techniques that account for CFO either have
high complexity [8] or ignore the structure in the phase errors [4].

In this paper, we define the notion of robustness for compressive
beam alignment, by identifying a set of sparse channels around the
true channel that are acceptable for beam alignment. Then, we de-
velop a sampling strategy for compressive channel acquisition such
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that standard CS under a CFO error provides a channel estimate
within the acceptable set. CS with the proposed sampling technique
results in smaller beam misalignments when compared to the com-
mon random phase shift-based CS [7]. We show how beam broaden-
ing can be used to compensate for such small misalignments. Sim-
ulation results show that our approach achieves a reasonable beam-
forming gain over a wider range of CFO when compared to beam
alignment through random phase shift-based CS.

Notation: A is a matrix, a is a column vector and a,A denote
scalars. The matrices AT ,A and A∗ represent the transpose, con-
jugate and conjugate transpose of A. The scalar a [m] denotes the
mth element of a. The (k, `) entry of A is A (k, `) orAk,`. The `th

column of A is A(:, `). The matrix |A| contains the element-wise
magnitude of the entries of A. The symbol� denotes the Hadamard
product. I denotes the identity matrix and UN ∈ CN×N denotes
the unitary Discrete Fourier Transform (DFT) matrix. We use ek to
represent the (k + 1)th canonical basis vector. The set IN denotes
the set of integers {0, 1, 2, ..., N − 1}.

2. SYSTEM AND CHANNEL MODEL

We consider a mmWave system with a uniform linear array (ULA) of
N antennas at the TX and the RX. Both the TX and RX are equipped
with a phased antenna array architecture [2]. Each of the N transmit
antennas are connected to the RF chain at the TX using a q-bit phase
shifter. Similarly, each receive antenna is connected to the RF chain
at the RX using a q-bit phase shifter. The TX and the RX can control
their phase shifters by applying beamforming vectors to their phased
arrays [3]. Beam alignment determines the best beamforming vec-
tors at the TX and the RX that maximize the received SNR. The best
beamforming vectors depend on the multiple-input multiple-output
(MIMO) channel between the TX and the RX.

The narrowband mmWave MIMO channel, defined as H ∈
CN×N , can be estimated by acquiring channel measurements
using pre-defined beam training vectors at the TX and the RX.
We use M to denote the number of channel measurements ac-
quired to learn H. For α = 1/

√
N and θi = 2πi/2q , we define

Qq =
{
αejθ1 , αejθ2 , ..., αejθ2q

}
as a set of allowed phase shifts.

To obtain the mth channel measurement, the TX and the RX ap-
ply f [m] ∈ QNq and w[m] ∈ QNq to their phased arrays. Let ε
be the digital domain CFO that corrupts the phase of the received
signal. Specifically, for a CFO of ∆f in the analog domain and a
symbol duration of T , we have ε = 2π∆fT . The mth channel
measurement acquired by the RX can be expressed as [8]

y[m] = w∗[m]Hf [m]ejεm + v[m], (1)

where v[m] is additive white Gaussian noise with zero mean and a
variance of σ2. The model in (1) assumes a narrowband setting with
perfect frame timing synchronization and ignores phase noise. Re-
laxing these assumptions is an interesting direction for future work.

4644978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



In a ULA-based system, the mmWave channel is approximately
sparse in the 2D-discrete Fourier transform (2D-DFT) dictionary due
to clustering in the propagation environment [2]. We define the
beamspace channel X as the 2D-DFT of H [9]:

H = U∗
NXU∗

N . (2)

For a tractable analysis, we consider X to be perfectly sparse, and
evaluate our design for a practical mmWave setting where X is ap-
proximately sparse. The matrix X is also called as the angle domain
channel, as the vertical and horizontal dimensions of the beamspace
correspond to the receive and transmit directions in the channel.
A common approach to perform beam alignment is one that uses
the maximizer of X, i.e., the 2D coordinate (ropt, copt) where |X|
achieves its maximum. These coordinates correspond to beamspace
directions of 2πropt/N and 2πcopt/N at the RX and the TX. Beam
alignment along these directions is performed by using the q-bit
phase quantized versions of UN (:, ropt) and UN (:, copt) as the
beamforming vectors at the RX and the TX. As perfect channel state
information (CSI) is not available in practice, beam alignment can
be performed using an estimate of X, or equivalently H. It can be
observed from (1) that M = N2 channel measurements are needed
to estimate a generic channel H in the absence of CFO. For ε = 0,
CS-based techniques that exploit sparsity of the mmWave channel
in the 2D-DFT dictionary can recover X from M � N2 channel
measurements [6][7].

CFO corrupts the phase of the channel measurements in (1). The
phase error due to CFO linearly increases with m, i.e., the index
of the acquired channel measurement, and is unknown. Standard
CS with the common independent and identically distributed (IID)
random phase shift-based channel acquisition [7] may fail to recover
the sparse channel when ε 6= 0. This paper focusses on the design of
beam training vectors {(f [m],w[m])}M−1

m=0 such that standard CS
with the proposed design is robust to phase errors due to ε when
compared to the random phase shift-based design.

3. LIMITING RANDOMNESS FOR ROBUST CS

For a tractable design of beam training vectors for robust CS, we
consider a special class of CS called convolutional CS (CCS) [10].
Let z ∈ QNq be the modulation sequence used for CCS of H [11].
In CCS, the TX and the RX can only apply circulantly shifted ver-
sions of z as the beam training vectors for channel acquisition. As
N distinct circulant shifts of z can be applied, there are N candidate
beam training vectors that can be used at each of the TX and the RX
in CCS. We define a right circulant delay matrix J ∈ RN×N such
that its first row is (0, 1, 0, ..., 0). The subsequent rows of J are right
circulant shifted versions of the previous row by one unit. The ` cir-
culant delay matrix is defined as J` = J·J · · ·J (` times). We define
J0 = I and J−` = JN−`. We define Z = [z,J1z,J2z, ...,JN−1z].
In CCS, the columns of Z are used as the beam training vectors.
When `tx[m] and `rx[m] circulantly shifted versions of z are applied
to the phased arrays at the TX and the RX, we have f [m] = Ze`tx[m]

and w[m] = Ze`rx[m]. As a result, the channel measurement in (1)
can be expressed as

y[m] = eT`rx[m]Z
∗HZe`tx[m]e

jεm + v[m]. (3)

For ε = 0, the entries of Z∗HZ can be acquired one at a time by
applying different amounts of circulant shifts at the TX and the RX.
We define the pseudo-channel matrix as G = Z∗HZ. Using this
definition, the channel measurement in (3) can be written as

y[m] = G(`rx[m], `tx[m])ejεm + v[m]. (4)

In a noiseless setting with zero CFO, G can be directly sampled
using CCS unlike H, i.e., the true channel [11][12].

Now, we show that G has the same structural property as H
when z is chosen as a Zadoff-Chu (ZC) sequence. To illustrate
the equivalence, we define a diagonal matrix Λz such that Λz =
UNZ∗U∗

N ; this follows from the property that the DFT matrix can
diagonalize the circulant matrix Z∗. Analogous to the definition of
the beamspace channel X, we define a masked beamspace channel
S as the 2D-DFT of the pseudo-channel, i.e., S = UNGUN . Using
G = Z∗HZ, H = U∗

NXU∗
N , and UNZ∗U∗

N = Λz, we can write

S = ΛzXΛz. (5)

When z is chosen as a ZC sequence, the diagonal entries of Λz are
unimodular [11]. As a result, |S(k, `)| = |X(k, `)| for every k and
`, and |S| achieves its maximum at (ropt, copt). Therefore, S can be
used to perform beam alignment instead of X. Note that the inverse
2D-DFT of the sparse matrix S is G. From standard CS theory [13],
it can be concluded that S can be reconstructed fromM = O(logN)
random samples of G for ε = 0 [12].

When the phase of the samples acquired from G are perturbed
due to CFO, standard CS results in a blurred and shifted version of
S that may not be useful for beam alignment [12]. Such unknown
shifts result in mismatched beamforming, i.e., the matrix Ŝ obtained
with standard CS may achieve its maximum at (ropt +δ1, copt +δ2)
for some δ1 6= 0 and δ2 6= 0. The directional perturbations, i.e.,
2πδ1/N and 2πδ2/N can be very large for the IID phase shift-
based design [12]. Our approach for robust CS-based beam align-
ment consists of two components. The first component in Sec. 3.1
and Sec. 3.2, designs a sampling scheme for CS such that CFO re-
sults in small bounded beam misalignments when compared to those
resulting from the random phase shift-based design. The second
component in Sec. 3.3, develops a beam broadening strategy that
compensates for the bounded beam misalignments.

3.1. Robustness in the context of beam alignment

A reasonable requirement for robust CS is that a CFO of ε should
result in beam misalignments that are no more than ε at both the TX
and the RX. In most wireless systems, the CFO is bounded by some
∆, i.e., |ε| ≤ ∆. Under the requirement for robust CS, we can be
sure that the estimated transmit and receive directions deviate from
the true directions by a maximum of ∆ radians. The proposed robust
CS technique is useful as CS with the common random phase shift-
based training can result in misalignments that can be larger than ∆.
For our analysis, we assume that ε and ∆ are integer multiples of
2π/N to define nε = Nε/(2π) and u = N∆/(2π). For a maxi-
mum CFO of ∆, the set of acceptable masked beamspace channels
around S is defined as

S(∆,S) = {R : R = JtrxSJTttx , |trx| ≤ u, and |ttx| ≤ u}. (6)

For any S̃ ∈ S(∆,S), it can be observed from (6) that the maxi-
mizers of S̃ and S differ (in modulo N ) by a maximum of u units
along both the row and column dimensions. In beamspace terms, the
best directions corresponding to S̃ and S can differ by a maximum
of 2πu/N units. By our definition, a robust CS technique is one that
provides any matrix within the acceptable set, i.e., S(∆,S).

For tractability of robust CS design, we consider a special case
of trx = ttx in (6). We define So(∆,S) ⊂ S(∆,S) such that
So(∆,S) = {R : R = JtSJTt , |t| ≤ u}, and Go(∆,S) = {P :
P = U∗

NRU∗
N for R ∈ So(∆,S)} as a set that contains the in-

verse 2D-DFT of all the elements in So(∆,S). As S ∈ So(∆,S)
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and G = U∗
NSU∗

N , it follows that G ∈ Go(∆,S). A graphical
illustration of the sets is shown in Fig. 1. Relaxing the condition
trx = ttx to develop new robust CS techniques is an interesting di-
rection for future work. Now, we investigate the possibility of using
CS to recover a matrix in So(∆,S). As circulant shifts of a signal
do not change its sparsity, any matrix in So(∆,S) is sparse as S is
sparse. As partial 2D-DFT CS can estimate S from fewer samples of
G for ε = 0, a natural question to ask is if partial 2D-DFT CS can re-
cover any R ∈ So(∆,S) using subsamples of some P ∈ Go(∆,S).
Note that subsamples of G cannot be acquired when ε 6= 0.

To characterize matrices in Go(∆,S), we define a Vandermonde
vector aN (θ) = (1, ejθ, ej2θ, . . , ej(N−1)θ)T and a matrix AN (θ) =
aN (θ)aTN (θ). We claim that G�AN (ε) ∈ Go(∆,S) for any |ε| ≤
∆, and show that subsamples of such a matrix can be acquired by
the RX in Sec. 3.2. The masked beamspace matrix corresponding
to G � AN (ε) is UN (G � AN (ε))UN . By the multiplication-
convolution duality of the Fourier transform [14], it can be shown
that the partial 2D-DFT of G�AN (ε) is JnεSJTnε as ε = 2πnε/N .
As |nε| ≤ u, JnεSJTnε ∈ So(∆,S). Therefore, G � AN (ε) ∈
Go(∆,S). Now, sampling strategies that acquire subsamples of G�
AN (ε) must be developed so that 2D-DFT CS using these samples
provides the sparse matrix JnεSJTnε .

2D-DFT

Fig. 1. The solid line on the left denotes So(∆,S), i.e., the set of
sparse matrices around S that satisfy the notion of robustness for
beam alignment. Go(∆,S) contains the 2D-DFT of all the elements
in So(∆,S). The extreme point JuSJTu in So(∆,S) is the 2D-DFT
of the extreme point G�AN (∆) in Go(∆,S).

3.2. Proposed sampling technique

In this section, we show how subsamples of G � AN (ε) can be
acquired using the model in (4). The entries in G�AN (ε) are

G0,0 G0,1e
jε G0,2e

2jε · · · G0,N−1e
j(N−1)ε

G1,0e
jε G1,1e

2jε G1,N−1e
jNε

G2,0e
2jε

... . .
.

. .
.
G2,N−1e

j(N+1)ε

...
...

GN−1,0e
j(N−1)εGN−1,1e

jNε · · · · · ·GN−1,N−1e
j2(N−1)ε

 .

We sequentially substitutem = 0, 1, 2, .., 2N−2 in (4) to check
which entries of G�AN (ε) can be acquired by the RX. Form = 0,
it can be observed that the (0, 0) entry of G�AN (ε) can be sampled
by using `rx[0] = 0 and `tx[0] = 0 in (4). Specifically, G0,0 is
acquired as the first channel measurement, i.e., for m = 0, by using
z as the beam training vector at both the TX and the RX. For the
second channel measurement, i.e., m = 1, the CFO introduces a
phase error of ε as seen in (4). Now, there are two entries in G �
AN (ε) that have a phase error of ε, i.e., at locations (1, 0) and (0, 1).
To acquire G � AN (ε) at (1, 0), the RX and the TX must apply
`rx[1] = 1 and `tx[1] = 0 circulant shifts of z to their phased arrays.
Similarly, the (0, 1) entry of G �AN (ε) can be acquired by using
`rx[1] = 0 and `tx[1] = 1. For a particuar m, however, only one
combination of beam training vectors can be used at the TX and the
RX to obtain y[m]. Therefore, (`rx[1], `tx[1]) is chosen at random

from {(1, 0), (0, 1)} and the corresponding pair of beam training
vectors, i.e., (Ze`rx[1],Ze`tx[1]), is used to obtain y[1]. For m = 2,
it can be observed that there are three terms in G � AN (ε) that
have a phase error of ej2ε. As the RX can acquire a single sample
at m = 2, one of the three coordinates in {(2, 0), (1, 1)(0, 2)} is
chosen at random to define the beam training vectors. This process
is stopped when the (N − 1, N − 1) coordinate of G �AN (ε) is
reached for m = 2N − 2. Thus, a maximum of 2N − 1 samples
of G � AN (ε) can be acquired using the proposed strategy. The
proposed beam training vector design technique, for M ≤ 2N − 1,
is summarized in Algorithm 1.

for m = 0 to M − 1 do
1. Sample a coordinate at random from
{(a, b) : a+ b = m,a ∈ IN , b ∈ IN}
2. Define the sampled coordinate as (`rx[m], `tx[m])
3. Set w[m] = Ze`rx[m] and f [m] = Ze`tx[m]

end for
Algorithm 1: Proposed beam training vectors for robust CS

The randomness in sampling using our framework is constrained
to local sets ofm+1 coordinates form ≤ N−1, and 2N−1−m co-
ordinates for N ≤ m ≤ 2N − 2. At this point, we hope that CS can
fill the unsampled entries of G�AN (ε) by exploiting the sparsity of
2D-DFT of G�AN (ε). Simulation results indicate that CS indeed
recovers G�AN (ε) or equivalently its 2D-DFT, i.e., JnεSJTnε , for
a sufficiently large M that is smaller than 2N − 1. For guarantees
on the restricted isometry property of the CS matrix resulting from
localized random subsampling and more elaborate simulations, we
refer the interested reader to [12]. Swift-Link [12] considers planar
arrays and uses the concept of trajectory to arrive at the proposed
randomized subsampling scheme. In this paper, we approach the
problem from a different perspective than Swift-Link, i.e., using the
notion of robustness. As JnεSJTnε ∈ So(∆,S), standard CS using
the proposed channel acquisition technique is robust to CFO.

3.3. Strategy to correct beam misalignments

CS with the proposed beam training design estimates JnεSJTnε ,
i.e., an (nε, nε) 2D-circulantly shifted version of S. The lo-
cation that maximizes the estimated masked beamspace is then
(ropt + nε, copt + nε). If CFO is ignored, the RX and the TX use
directional beams defined by rest = ropt +nε and cest = copt +nε.
Such a choice, however, may result in poor SNR. It can be ob-
served that ropt lies within u units of rest as |nε| ≤ u. Therefore,
broadening a directional beam along 2πrest/N by 2πu/N units on
its either sides ensures that reasonable beamforming gain can be
achieved along 2πropt/N . Finding beamforming vectors in QNq
that results in a broadened beam, however, is non-trivial due to the
constant magnitude of the elements in QNq . The beamforming vector
corresponding to the broadened beam is obtained using the CAN
algorithm in [15]. Let wbd and fbd be the broadened beamforming
vectors used at the RX and the TX. The received SNR for such a
configuration is SNRbd = |w∗

bdHfbd|2/σ2. As the energy in the
broadened transmit beam is distributed uniformly among 2u + 1
directions, the energy of the beam along ropt is 1/(2u + 1). As a
result, an SNR loss of 10 log10(2u+ 1) dB is incurred with respect
to the directional beam along ropt. The same amount of SNR loss
is incurred due to beam broadening at the RX. Therefore, the total
SNR loss relative to best directional transmission and reception is
20 log10(2u + 1) dB. As u � N in typical mmWave systems, the
SNR obtained with the broadened beams can still be significantly
higher than that achieved by the omnidirectional one.
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4. SIMULATIONS

We consider a narrowband mmWave system operating at a carrier
frequency of 38 GHz. The symbol duration in the system is set as
T = 10 ns; this corresponds to a bandwidth of 100 MHz. A half-
wavelength spaced linear array of N = 64 antennas is used at both
the TX and the RX. The resolution of the phase shifters in the an-
tenna arrays at the TX and the RX is set as q = 3 bits. The channels
in our simulation are generated from the NYUSIM simulator [16]
for a urban micro line-of-sight (UMi-LoS) setting with a TX-RX
separation of 15 m. The results we report are for 100 channel re-
alizations obtained from the channel simulator. The channel matrix
for each realization is scaled so that the expected Frobenius norm of
the channel, i.e., E[‖H‖2F ], isN2. The SNR in the channel measure-
ments in (1) is defined as SNR = 10 log10(1/σ2). In this paper, we
set σ = 1 so that the SNR during channel acquisition is 0 dB, and
acquire M = 126 channel measurements. The number of channel
measurements chosen corresponds to a subsampling ratio of about
3% when compared to exhaustive scan.

The resolution of the oscillators at the TX and the RX is assumed
to be within 20 ppm of the carrier frequency [3]. As a result, the
maximum analog domain CFO in the system is 40 ppm of 38 GHz,
i.e., ∆f = 1.52 MHz. In the digital domain, this translates to a
maximum limit of ∆ = 0.096 rad. As ∆ is not exactly an integer
multiple of 2π/N , we define u = ceil(N∆/(2π)). For the settings
in our simulations, it can be observed that u = 1. The channel
measurements in our framework are acquired by applying different
circulant shifts of a ZC sequence z to the phased arrays at the TX and
the RX. The amount of circulant shifts to be used in the transceiver
are determined by Algorithm 1. The root of the ZC sequence z is
chosen as 11 so that its 3-bit phase quantized version preserves the
unimodular DFT property [12].
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Random training, ?rnd

Fig. 2. Standard CS with the proposed training results in smaller
beam misalignments when compared to IID random phase shift-
based CS. Here, ∆f = 0.7812 MHz and SNR = 0 dB.

To study the robustness of the proposed CS technique to CFO,
we use OMP algorithm [17] to obtain the sparse channel estimate.
Here, we choose a maximally off-grid CFO corresponding to a grid
resolution of 2π/N . Specifically, a CFO of 20.5579 ppm of the car-
rier frequency is considered so that ε = π/N and nε = 0.5. Under a
CFO error, let Ŝrob and X̂rnd denote the channel estimates obtained
using OMP with the proposed training in Algorithm 1 and the IID
random phase shift-based training in [7]. In both cases, the 2D-DFT
basis was used for a sparse channel representation, and M = 126
channel measurements were acquired at an SNR of 0 dB. Then, the

coordinates where S, Ŝrob, and X̂rnd achieve their maximum are de-
termined. These coordinates are denoted by (ropt, copt), (rest, cest),
and (rrnd, crnd). The deviations in the directional beams at the RX
with the proposed training and the random training are computed as
φrob = 2π|rest−ropt|/N and φrnd = 2π|rrnd−ropt|/N . From the
empirical cumulative distribution function of φrob and φrnd in Fig.
2, it can be observed that CS with IID phase shift based-training
results in arbitrary beam misalignments under a CFO error. In con-
trast, CS using the proposed acquisition technique, i.e., Algorithm
1, results in beam misalignments within 2π/N of the best direction,
highlighting the robustness achieved by our design.

Now, we evaluate the proposed technique with the beam broad-
ening strategy in Sec. 3.3 using u = 1 and (rest, cest). The SNR
with the broadened beams is shown as a function of CFO in Fig.
3. For the random phase shift-based training, the SNR is deter-
mined using directional beams corresponding to (rrnd, crnd), i.e.,
SNRrnd = |X(rrnd, crnd)|2/σ2. For a benchmark, we evaluate
Agile-Link [4], a non-coherent algorithm, under the same settings.
As Agile-Link ignores the phase of the channel measurements, its
performance is invariant to CFO. We set the TX and RX bin pa-
rameters in Agile-Link to 4, and use 8 hashes to obtain 128 chan-
nel measurements. From Fig. 3, it can be observed that standard
CS with random phase shift-based training fails beyond a CFO of
12.5 ppm. The proposed beam alignment technique that performs
CCS using localized random subsampling followed by beam broad-
ening achieves a reasonable SNR over a wider range of CFO, i.e.,
from −40 ppm to 40 ppm. It can be noticed from Fig. 3 that our
approach does not perform as good as IID phase shift-based CS for
ε = 0. This reduction in SNR is due to the beam broadening strategy
that ensures robustness to any unknown CFO within 40 ppm.

-40 -30 -20 -10 0 10 20 30 40
CFO in ppm

0
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35
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N
R
(d
B
)

Perfect CSI
Proposed training, broaden
Random training
Random training, broaden
Agile-Link

Fig. 3. The proposed beam broadening strategy corrects small beam
misalignments after CS using our new training, and achieves a rea-
sonable SNR over a wide range of CFO. It can be observed that IID
random phase shift-based CS results in large beam misalignments
that cannot be corrected using the same beam broadening strategy.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a new sampling technique for CS-based beam
alignment that achieves robustness to unknown phase errors due to
CFO. The directional beams obtained using our method differ from
the best ones only by a small amount when compared to standard
random designs. Using a beam broadening strategy, we showed
that a reasonably high SNR can be achieved with our approach even
when standard techniques fail. Extending our idea to generic robust
CS problems is an interesting direction for future work.
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