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Abstract—Massive multiple-input multiple-output (MIMO) communi-
cations are the focus of considerable interest in recent years. While theo-
retical gains of such massive MIMO have been established, implementing
MIMO systems with large-scale antenna arrays in practice is challenging.
Among the practical difficulties associated with massive MIMO imple-
mentations are increased cost, power consumption, and physical size. In
this work we study the implementation of massive MIMO antenna arrays
using dynamic metasurface antennas (DMAs), an emerging technology
which inherently handles the aforementioned challenges. DMAs realize
planar large-scale arrays of tunable antenna elements, and can adaptively
incorporate compression and analog combining in the physical antenna
structure, thus reducing cost and power consumption. We first propose a
mathematical model for massive MIMO systems with DMAs and discuss
their constraints compared to ideal antenna arrays. Then, we characterize
the fundamental limits of the resulting systems, and propose an algorithm
for designing practical DMAs to approach these limits. Our numerical
results indicate that the performance of practical DMA-based massive
MIMO systems is comparable with ideal antenna arrays.

Index terms— Massive MIMO, metasurface antennas.

I. INTRODUCTION
Future wireless systems are required to support an increasing

number of end-users with growing throughput demands. Recent years
have witnessed a growing interest in massive multiple-input multiple-
output (MIMO) systems, in which the base station (BS) is equipped
with a large antenna array, as a method for meeting these demands
and increasing the spectral efficiency (SE). In particular, such systems
can increase the throughput in a manner which is scalable with the
number of BS antennas [1].

The theoretical benefits of massive MIMO systems in terms of
SE are well-established [2]–[4]. However, implementing a massive
MIMO BS with a standard antenna array, capable of achieving these
benefits, is still a very challenging task. In particular, some of the
difficulties which arise when realizing large-scale antenna arrays
include high cost [5], [6], increased power consumption [7], and
constrained physical size and shape [8], [9]. Several signal processing
methods have been studied, aimed at tackling these difficulties. The
proposed approaches include introducing analog combining to reduce
the size and cost of the system [5], [10]; implementing low-resolution
quantization and/or antenna selection to mitigate the power consump-
tion [7], [11]–[15]; and utilizing efficient power amplifiers operating
at reduced peak-to-average-power ratio [16], [17]. Nonetheless, all
these approaches assume a fixed optimal antenna array, and attempt to
tackle the difficulties which arise from this antenna array architecture
from a signal processing perspective.

In parallel to the ongoing efforts to make massive MIMO feasible
using signal processing techniques, a large body of research has
focused on designing practical antenna arrays for massive MIMO
systems [8], [9], [18]. An emerging technology for realizing large-
scale antenna arrays of small physical size uses metamaterial radiators
instead of conventional antenna elements. Metamaterial antennas
consist of arrays of sub-wavelength radiators placed close to each
other and are able to realize desired radiation patterns [19]. While
the resulting antenna arrays typically exhibit mutual coupling and fre-
quency selectivity, a larger number of tunable metamaterial antenna

This project has received funding from the Air Force Office of Scientific
Research under grant No. FA9550-18-1-0187.

N. Shlezinger and Y. C. Eldar are with the faculty of Mathematics and
Computer Science, Weizmann Institute of Science, Rehovot, Israel (e-mail:
nirshlezinger1@gmail.com; yonina@weizmann.ac.il). O. Dicker is with the
department of EE, Technion, Haifa, Israel (e-mail: dicker@technion.ac.il). M.
F. Imani and D. R. Smith are with the department of ECE, Duke University,
Durham, NC (e-mail: mohamad.imani@gmail.com; drsmith@duke.edu).

elements can be packed in the same physical area. For example, an
antenna array of 144 metamaterial radiators operating at 60 GHz can
be realized at a physical size which is less than 1% of that required
when using conventional geometries [9]. Most previous works on
metamaterial antennas for MIMO communications focus on designing
the physical antenna structure and metamaterial substrate to satisfy
desired requirements, such as gain, bandwidth, efficiency, and level
of mutual correlation [18]–[21]. Thus, the resulting antenna structure
is fixed and independent of the processing which the signals undergo.

Recently, dynamic metasurface antennas (DMAs) have been pro-
posed as a method for electrically tunning the physical characteristics
of metamaterial antennas [22], [23]. DMAs inherently implement
signal processing techniques such as beamforming, analog combin-
ing, compression, and antenna selection, without additional hardware.
The application of DMAs was shown to yield simple, robust, and
low-power systems for microwave imaging [24]–[26], radar systems
[27]–[29], and satellite communications [30]. Despite the potential
of DMAs in combining signal processing and antenna design, their
application for massive MIMO systems has not yet been studied.

In this work we aim to fill this gap by studying large-scale
multi-user MIMO networks utilizing DMAs. In particular, we derive
the achievable performance on the uplink, namely, when data is
transmitted from the user terminals (UTs) to the BS. The application
of DMAs yields a physically small large-scale antenna array which
inherently implements signal processing techniques such as analog
combining, subject to specific constraints induced by the physics of
the metasurfaces. Such structures can be used for realizing small
size, reduced cost, and spectrally-efficient massive MIMO BSs.
Unlike standard analog combining, e.g., [5], [10], DMAs implement
adjustable compression without requiring additional hardware.

We propose a mathematical model for DMA-based MIMO sys-
tems, accounting for their unique characteristics, such as moderate
frequency selectivity and mutual coupling. We focus on the scenario
where the frequency selectivity, induced by the physics of the
metasurfaces, is identical among all the radiating elements. We
characterize the maximal achievable average sum-rate among all
UTs in the network, and compare them to the fundamental limits,
achievable with unconstrained antenna arrays. We show that the effect
of frequency selectivity can be accounted for in the configuration
of the DMAs, and thus the fundamental limits can be approached
using DMA based antenna arrays. Then, we derive an alternating
optimization algorithm for configuring the DMA to approach the
optimal performance, accounting for the specific characteristics of
the metasurfaces. Our simulations demonstrate that the achievable
performance of DMA-based massive MIMO systems is comparable
to the theoretical fundamental limits of the channel.

The rest of this paper is organized as follows: Section II introduces
the system model. Section III derives the performance limits, and
proposes an algorithm for designing DMAs to approach these limits.
Section IV provides simulation examples.

Throughout this paper, we use boldface lower-case letters for
vectors, e.g., x; the ith element of x is written as (x)i. Matrices are
denoted with boldface upper-case letters, e.g., M , (M)i,j denotes its
(i, j)th element, and |M | is its determinant. We use In to denote the
n×n identity matrix. Stochastic expectation and Kronecker delta are
denoted by E{·} and δ·,· respectively. Let ‖·‖ denote the Euclidean
norm when applied to vectors and the Frobenius norm when applied
to matrices, C and N are the sets of complex numbers and natural
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numbers, respectively.

II. SYSTEM MODEL

A. Dynamic Metasurface Antennas
Metamaterials are a class of artificial materials whose physical

properties, and particularly their permittivity and permeability, can
be engineered to exhibit a broad set of desired characteristics [31].
Metasurface antennas implement antenna arrays using microstrips
consisting of a multitude of sub-wavelength, frequency-selective res-
onant metamaterial radiating elements [22]. On the receive side, each
microstrip feeds a single RF chain, whose digital output is obtained
as a linear combination of the radiation observed by each element
of the microstrip. To mathematically formulate the input-output
relationship of such antennas, consider a metasurfarce antenna with
nd microstrips, each consisting of le elements. Let y[i] ∈ Cnd·le×1

be a vector such that (y[i])(p−1)·le+l is the radiation observed at the
lth element of the pth microstrip at time i. The frequency response
of the elements is modeled as a finite-memory causal linear filter
{h[τ ]}mhτ=0. The output of the metasurface antenna at time i is the
vector z[i] ∈ Cnd whose entries can be written as

(z[i])p =

le∑
l=1

qp,l

mh∑
τ=0

h[τ ] · (y[i− τ ])(p−1)·le+l , (1)

with p ∈ {1, 2, . . . , nd}. Here, each coefficient qp,l ∈ Q represents
the physical properties of the lth element of the pth microstrip,
and Q is the set of feasible values of qp,l, determined by the
physics of the metsurface. Due to the sub-wavelength proximity of
the elements in microsrtip, the input vector y[i] is spatially correlated.
The relationship between the multivariate processes y[i] and z[i] can
be thus written as

z[i] = Q

mh∑
τ=0

h[τ ] · y[i− τ ], (2)

where Q is an nd × (nd · le) matrix representing the configurable
weights of the DMAs. Using (1), we can write

(Q)p1,(p2−1)nd+l
= qp1,l · δp1−p2 . (3)

DMAs integrate a tuning mechanism into each independent antenna
[28]. The dynamic tunning adds the flexibility to adjust the properties
of the metamaterial elements, namely, to control the values of the
coefficients {qp,l} in (1). The set of possible values of {qp,l}, denoted
Q, represents the Lorentzian resonance response [23], and typically
consists of a subset of the complex plain C of either of the following
forms [23, Sec. III]:
• Amplitude only: Q = [a, b] for some 0 < a < b.
• Binary amplitude: Q = c · {0, 1} for some fixed c > 0.
• Lorentzian-constrained phase: Q = {q = j+ejφ

2
: φ∈ [0, 2π]}.

In order to quantify the gains of utilizing DMAs, we recall that in
standard antenna arrays, the digital output is the observed vector y[i].
Clearly, any performance achievable with DMAs is also achievable
with standard antenna arrays, as z[i] can be obtained from y[i],
but not vice versa. However, standard antennas require each of the
nd · le to be connected to an RF chain, while DMAs require a
single RF chain per microstrip. RF chain hardware tends to be costly
[6], is typically a dominant source of power consumption [7], and
require memory for storing their digital output [32]. Consequently,
by utilizing DMAs, the resulting cost, memory usage, and power
consumption, are reduced by a factor of le compared to standard
antenna arrays. Additionally, unlike standard antenna arrays, DMAs
can realize large-scale planar arrays of tunable antenna elements [9].

We note that reducing the number of RF chains can also be
carried out with standard antenna arrays using dedicated analog
combining hardware, see, e.g., [5], [6], [10], [32]. However, in the
presence of standard antenna arrays, analog combining comes at the

Fig. 1. System model illustration.
cost of additional hardware, increasing the overall size and cost.
DMAs inherently implement adjustable analog combining in the
physical structure of the metasurfaces, without additional hardware.
Furthermore, standard analog combining implemented using dedi-
cated hardware is also typically subject to constraints. In particular,
while in DMAs the weights matrix Q must obey the structure in (3)
and its entries must be in Q, standard analog combiners must satisfy
the architecture-based constraints detailed in [6, Sec. II]. Finally, we
note that when le = 1, Q = Ind , and h[τ ] is a Kronecker delta
function, then z[i] ≡ y[i], and the resulting DMA coincides with
the standard array. However, this implementation requires the same
amount of RF chains as standard arrays, and does not result in any
gains in cost, power consumption, and memory requirement.

B. Problem Formulation
We consider a single-cell multi-user uplink MIMO system. The

BS is equipped with a DMA, consisting of nd microstrips, each with
le elements, thus the overall number of elements is nt , nd · le. The
number of UTs served by the BS is nu ≤ nt.

Let G ∈ Cnt×nu represent the channel matrix from the UTs to the
BS, and w[i] ∈ Cnt be an i.i.d. zero-mean proper-complex Gaussian
signal with covariance matrix CW , representing the additive channel
noise at the BS. By letting x[i] ∈ Cnu be the transmitted signal of
the UTs at time index i, the corresponding channel output at the BS
is given by

y[i] = Gx[i] + w[i]. (4)

We assume that the UTs utilize Gaussian codebooks, i.e., x[i] is a
zero-mean Gaussian vector with identity covariance matrix, and that
the BS knows the realization of G.

At the BS, the DMA converts the received y[i] ∈ Cnt into the
vector z[i] ∈ Cnd , used to decode the message. The relationship
between y[i] and z[i] is given by (2). An illustration of this system
is given in Fig. 1. Due to the moderate frequency variations exhibited
by metasurfaces, its frequency selectivity, modeled via h[τ ], cannot be
ignored by assuming a narrowband model, as in the standard massive
MIMO literature, e.g., [3].

In order to compare the performance achievable with DMA to
optimal unconstrained antenna arrays with nt RF chains, we also
consider the case where the BS decodes the transmitted signals based
on the channel output y[i], instead of z[i]. This scenario is referred
to henceforth as optimal MIMO. Recall that the maximal SE of
optimal MIMO is not smaller than that achievable with DMAs, as
the output of the DMA z[i] can be obtained from y[i]. To guarantee
fair comparison, the antenna spacing in the optimal MIMO setup is
identical to that used with DMAs, thus the resulting wireless channel,
i.e., the relationship between x[i] and y[i], is the same as in the DMA
setup.

Our goal is to characterize the SE, given by the achievable average
sum-rate, for the considered system with DMAs compared to the
optimal MIMO case, and to provide guidelines for configuring DMAs
such that performance is optimized.

III. ACHIEVABLE AVERAGE SUM-RATES

In the following we study the achievable average sum-rate and the
resulting DMA configuration for the setup presented in Section II.
The maximal achievable average sum-rate for a fixed DMA weights
matrix Q is stated in the following theorem:
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Theorem 1. The maximal achievable average sum-rate of the chan-
nel in (4) and (2) for a fixed weight matrix Q is given by

Rs =
1

nu
log

∣∣∣∣Ind +QGGHQH
(
QCWQH

)−1
∣∣∣∣ . (5)

Proof: The theorem is obtained by incorporating (2) as part of
the channel. The achievable sum-rate of the resulting finite-memory
multiple-access channel is given in [34].

Theorem 1 gives rise to the fundamental performance limits of the
wireless channel, as stated in the following corollary:

Corollary 1. Define G̃ , C
−1/2
W GGHC

−1/2
W , and let {λi}nui=1 be

its eigenvalues arranged in descending order. The achievable average
sum-rate of the optimal MIMO setup is given by

ROM
s =

1

nu

nu∑
i=1

log
(
1 + λi

)
. (6)

Proof: As noted in Section II, when le = 1, Q = Ind , and
Γ(ω) ≡ Ind , the resulting setup coincides with the optimal MIMO
setup. Substituting this into (5) proves (6).

When DMAs are utilized, we note that due to the structure
constraints on Q, it is difficult to determine the DMA weights matrix
Q such that (5) is maximized. Therefore, in order to design Q
and obtain the resulting Rs, we first derive the choice of Q which
maximizes the achievable sum-rate, ignoring the structure constraints
detailed in Section II. Then, we propose an iterative algorithm for
configuring practical constrained DMAs.

A. Optimal Weights
To find Q which maximizes (5), we formulate the dependence of

Rs on Q in the following lemma:

Lemma 1. Define Q̃ , QC
1/2
W and let V be its right singular

vectors matrix. By letting Ṽ be the nt×nd matrix consisting of the
first nd columns of the unitary matrix V , the achievable sum-rate in
(5) can be written as

Rs =
1

nu
log
∣∣∣Ind + Ṽ HG̃Ṽ

∣∣∣ . (7)

Proof: By replacing Q in (5) with Q̃ = QC
1/2
W it follows from

Sylvester’s determinant theorem [37, Ch. 6.2] that

Rs =
1

nu
log

∣∣∣∣Int + G̃

(
Q̃H

(
Q̃Q̃H

)−1

Q̃

)∣∣∣∣ . (8)

Next, we note that Q̃H
(
Q̃Q̃H

)−1
Q̃ is a projection matrix, and can

be written as Q̃H
(
Q̃Q̃H

)−1
Q̃ = Ṽ Ṽ H [37, Ch. 5.9]. Substituting

this into (8) proves (7).
Lemma 1 implies that the SE depends on the weights matrix Q

only through the first nd right eigenvectors of Q̃ = QC
1/2
W . If we

ignore the structure constraints of Q, then the maximal achievable
sum-rate and the corresponding choice of Ṽ which maximizes (8)
are given in the following corollary:

Corollary 2. The maximal achievable average sum-rate when Q can
be any complex matrix is given by

ROD
s =

1

nu

min(nd,nu)∑
i=1

log(1 + λi), (9)

and is achieved by setting the columns of Ṽ to be the eigenvectors
corresponding to {λi}nui=1.

Proof: The corollary follows directly from (8).
The number of non-zero eigenvalues of G̃ is given by its rank,

denoted ng , which is at most nu. It thus follows from (9) that
increasing the number of microstrips nd to be larger than ng has no
effect on the optimal sum-rate ROD

s . In particular, comparing (9) to
the fundamental limits in (6), we note that when nd ≥ ng , then ROD

s

achieves the fundamental limits ROM
s . However, as each microstrip

requires a single RF chain, increasing nd implicitly increases the
cost, power usage, and memory requirements of the resulting system.
Furthermore, by letting ŨD̃Ṽ H be the compact singular valued
decomposition (SVD) of the optimal Q̃, it follows from Corollary
2 that the weights matrix which maximizes (5) can be written as

QOD = ŨD̃Ṽ HC
−1/2
W . (10)

The matrix in (10) is optimal for any unitary nd×nd matrix Ũ and
diagonal nd × nd matrix D̃ with positive diagonal entries.

B. Practical DMA Design
The derivation of Corollary 2 ignores the structure constraints on

Q, and assumes that the right eigenvectors matrix Ṽ can be any set of
unitary vectors. Nonetheless, as detailed in the problem formulation,
Q must be written as in (3), and its coefficients {qi,l} should belong
to the feasible set Q. Since finding the constrained matrix Q which
maximizes (5) is a difficult task, we propose to set Q to be the closest
feasible matrix to the unconstrained QOD in the sense of minimal
Frobenious norm. Here, as in [10], [33], we exploit the invariance of
ROD

s to the selection of the left singular matrix Ũ and the diagonal
matrix D̃, and set these matrices such that the Frobenious distance to
the feasible approximation is minimized. To formulate the problem,
we let Qnd×nt be the set of nd × nt which can be written as in (3)
and whose non-zero entries belong to the feasible set Q. Let Und and
Dnd denote the sets of nd×nd unitary matrices and diagonal matrices
with positive diagonal entries larger than some ε > 0, respectively.
We set the weights matrix Q to be the solution to:

min
Q∈Qnd×nt ,Ũ∈Und ,D̃∈Dnd

∥∥∥Q− ŨD̃Ṽ HC
−1/2
W

∥∥∥2 . (11)

Let PQ : Cnd×nt 7→ Qnd×nt be the entry-wise projection into
Qnd×nt . By (3) for any M ∈ Cnd×nt , PQ (M) is given by

(PQ (M))p1,(p2−1)nd+l=argmin
q∈Q

∣∣∣q−(M)p1,(p2−1)nd+l

∣∣∣2 ·δp1−p2 .
We propose to solve (11) using alternating minimization, based on
the properties detailed in the following lemma:

Lemma 2. For any M ∈ Cnd×nt we have that

QAM (M) , argmin
Q∈Qnd×nt

‖Q−M‖2 = PQ (M) . (12a)

Additionally, for any M1,M2 ∈ Cnd×nt , let UM and V M be the
left singular vectors matrix and the right singular vectors matrix of
M1M

H
2 , then

ŨAM(M1,M2),argmin
Ũ∈Und

∥∥∥M1−ŨM2

∥∥∥2=UMV H
M . (12b)

Finally, by letting m1,i and m2,i be the ith column of MH
1 and

MH
2 , respectively, it holds that the diagonal entries of

D̃AM (M1,M2) , argmin
D̃∈Dnd

∥∥∥M1 − D̃M2

∥∥∥2 , (12c)

are given by(
D̃AM (M1,M2)

)
i,i

= max

(
Re
(
mH

1,im2,i

)∥∥m2,i

∥∥2 , ε

)
. (12d)

Proof: The equality (12a) follows from the definition of the
Frobenius norm. Since the feasible set Qnd×nt is defined entry-wise,
the norm is minimized by entry-wise projection.

Similarly, the minimizing matrix in (12c)-(12d) holds as∥∥∥M1 − D̃M2

∥∥∥2 =

nd∑
i=1

∥∥∥m1,i −
(
D̃
)
i,i
·m2,i

∥∥∥2
(a)
=

nd∑
i=1

∥∥m1,i

∥∥2−2Re
(
mH

1,im2,i

)
·
(
D̃
)
i,i
+
∥∥m2,i

∥∥2 · (D̃)2
i,i
,
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where (a) follows since (D̃)i,i is real-valued. Consequently, the
optimal setting of (D̃)i,i ≥ ε is given by (12d).

Finally, the unitary matrix in (12b) is obtained from the unitary
Procrustes problem [36, Ch. 7.4].

Based on Lemma 2, we propose solving the joint optimization
problem (11) in an alternating fashion, i.e., optimize over Q for fixed
Ũ , D̃, next optimize over Ũ for fixed Q, D̃, then optimize over
D̃ for fixed Q, Ũ , and continue until convergence. The resulting
alternating minimization algorithm is summarized in Algorithm 1.
As the objective in (11) is differentiable, convergence of alternating
optimization is guaranteed [38, Thm. 2].

Algorithm 1 DMA weights configuration

1: Initialization: Set k = 0 and Ũk = Ind , D̃k = Ind .
2: Compute Ṽ using Corollary 2.
3: Set Qk+1=QAM with M=ŨkD̃kṼ

HC
−1/2
W via (12a).

4: Set Ũk+1 = ŨAM via (12b) with M1 = Qk+1 and M2 =

D̃kṼ
HC

−1/2
W .

5: Set D̃k+1 = D̃AM via (12c)-(12d) with M1 = ŨH
k+1Qk+1 and

M2 = Ṽ HC
−1/2
W .

6: If termination is inactive: Set k := k + 1 and go to Step 3.

In Algorithm 1 we exploit the fact that the optimal unconstrained
QOD achieves the same sum-rate for any setting of Ũ , D̃, and use
these matrices as optimization variables. Consequently, we obtain
feasible weight matrices which are within a small distance from
the optimal unconstrained matrix. In Section IV we numerically
demonstrate that BSs equipped with DMAs designed via Algorithm
1 are capable of achieving performance within a small gap of
the fundamental limits of the channel, achievable using optimal
impractical antenna arrays.

IV. NUMERICAL STUDY

In this section we numerically evaluate the achievable performance
using the proposed DMA configurations. We consider an uplink
multi-user MIMO cell, based on the model used in [2]. Here, a BS
equipped with a DMA serves nu = 10 UTs, uniformly distributed in
a hexagonal cell of radius 400 m. We use ρi to denote the distance
of the ith UT from the BS. The channel matrix G is generated
as G = HD, where H ∈ Cnt×nu is a random proper-complex
zero-mean Gaussian matrix with i.i.d. entires of unit variance, and
D ∈ Cnu×nu is a diagonal matrix whose entires are (D)i,i =

ζi
ρ2i

,
where {ζi} are the shadow fading coefficients, independently ran-
domized from a log-normal distribution with standard deviation of 8
dB.

As the DMA elements are sub-wavelength separated, the noise w[i]
is spatially correlated. We use an exponentially decaying spatial cor-
relation profile, namely, (CW)i,l = σ2

W · e−|i−l|, i, l ∈ {1, . . . , nt}.
We consider the following setups:
• RUC

s - unconstrained weights, i.e., Q = C.
• RAO

s - amplitude only weights with a = 0.001, b = 5.
• RBA

s - binary amplitude weights with c = 0.1.
• RLP

s - Lorentzian-constrained phase.
In Fig. 2 we let the signal-to-noise ratio (SNR), defined as 1/σ2

W ,
vary in the range [−5, 30] dB. For each SNR value we compare the
performance achievable using DMAs with nd = 10 microstrips, each
with le = 10 elements, computed via Algorithm 1, to the optimal
ROD

s computed via Corollary 2. Since nd ≥ nu, then ROD
s equals

the fundamental limit, ROM
s . Observing Fig. 2, we note that for

SNRs above 10 dB, RLP
s coincides with RUC

s , indicating that the
Lorentzian-constrained phase restriction induces negligible loss. The
amplitude only restriction and the binary amplitude constraint achieve
roughly the same performance, which is within a small gap of RLP

s .
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Furthermore, the SNR loss induced by restricting the weights matrix
to satisfy (3) is approximately 2.5 dB.

Next, in Fig. 3, we fix the SNR to 15 dB, the number of antennas
to nt = 90, and compute the SEs for nd ∈ [1, 18]. Observing Fig. 3,
we again note that RLP

s approaches the performance achieved with
unconstrained weights, RUC

s , for most considered values of nd. As
expected, for nd = 1, RUC

s , which is subject only to (3), coincides
with the optimal ROD

s , as (3) imposes no constraint on Q for nd = 1.
Next, we note that ROD

s is monotonically increasing for nd ≤ 3, and
for nd > 3 it remains constant and equals the fundamental limit of
the channel, ROM

s . This is in agreement with the discussion following
Corollary 2, as for the considered scenario, most realizations of G̃
have at most 3 dominant eigenvalues, thus ROD

s remains constant for
nd > 3. Since the constraint induced on RUC

s in (3) becomes less
significant as nd decreases, it is shown in Fig. 3 that, for a fixed
number of elements nt, both RUC

s and RLP
s do not monotonically

increase with the number of microstrips nd. Finally, we observe in
Fig. 3 that, while ROD

s remains constant as the number of microstrips
nd increases above nu, the performance achievable with DMAs is
monotonically increasing. This follows since increasing the number
of microstrips nd allows designing the matrices Ũ and D̃ in (10),
which have no effect on ROD

s , such that the QOD can be better
approximated using a feasible weights matrix.

V. CONCLUSIONS

In this work we studied uplink massive MIMO systems where the
large-scale antenna array at the BS is implemented using a DMA.
We characterized the SE, and derived an alternating optimization
algorithm for designing practical DMAs to approach the optimal
performance. Our results illustrate that by properly adjusting the
inherent combining and compression induced by the physics of
DMAs, a practical massive MIMO system can be constructed which
is capable of achieving performance comparable to the fundamental
limits, obtained with optimal costly, power consuming, and large-
sized antenna arrays.
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