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ABSTRACT
The paper presents a sampling method that dramatically improves
the measurement accuracy of the round trip time (RTT) measure-
ment in digital communication systems. For state of the art methods,
the accuracy of time measurements in discrete time systems and low
noise scenarios is limited to the sampling period T. If the measure-
ment is repeated m-times, the upper bound of the quantization mean
square error (MSE) is∼ 1

m
. The proposed sampling scheme reduces

the upper bound of the MSE to ∼ 1
m2 . This exceptional feature is

enabled by applying a prime relation between sampling rate and bit
rate of the communication system.

Index Terms— round trip time, measurement accuracy, local-
ization, WSN, synchronization, internet of things, industrial wireless
sensor network, IWSN, sampling

1. INTRODUCTION AND RELATED WORK

RTT measurements, obtained in a two-way message exchange [1],
are the basic building block for precise delay-compensated synchro-
nization [2, 3], time-based ranging [4] and localization [5], or secu-
rity applications such as distance bounding protocols [6]. Moreover,
RTT measurements are used for RFID-tag identification [7] and for
ranging in radar applications [8].

In conventional systems, in which the sampling frequency is
chosen as a multiple to the symbol rate (and hence of the packet
rate), the MSE of the RTT from a single measurement is bound by
the sampling period T with T2

12
, if the jitter of the RTT is sufficiently

small. Based on standard estimation theory, by repeating the mea-
surements m-times at m random instants of time, the MSE can be
reduced by 1

m
. If there is no strict random sampling, this reduction

does not hold, which is usually the case if the sampling rate is an
integer multiple of the bit rate. Therefore, the standard methods can
only be substantially improved by increasing the sample rate.

In this work we propose to use a different sampling scheme that
guarantees reduction of the MSE with 1

m2 . Based on the results
given in the paper, the sampling frequency has to be chosen with
a fractional prime relation to the bit rate. This sampling method
allows to reduce the MSE substantially without the need to increase
the sampling rate. Additionally, we derive a tight upper bound of
the MSE independent of the value of the RTT, which is not possible
with conventional systems.
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tronic Component Systems for European Leadership Joint Undertaking under
grant agreement No 737422. This Joint Undertaking receives support from
the European Union’s Horizon 2020 research and innovation programme
and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal,
Netherlands, Belgium, Norway.

Obviously, the new method supports multi node ranging algo-
rithms focusing on RTT methods and in combination with ranging.
According to [9] it is possible to avoid the lack of scalability result-
ing from pairwise sequentially ranging. Also in wired network topol-
ogy the round trip time plays a major role in synchronizing nodes on
a pairwise base [3]. The presented method is even more relevant
for underwater environments using an asymmetrical round trip path
to achieve node localization on large-scale. In those applications,
energy-efficient and accurate RTT estimates without prior time syn-
chronization are demanded [10]. Also, it has to be mentioned that
RTT measurements in 5G systems [11] are profiting immediately
from the proposed method, because the sampling period is limited
to coarse time steps. In those cases the measurement jitter is very
small compared to the sampling time and the proposed method is
improving the measurement accuracy.

In the next sections we show that it is possible to reduce the MSE
without increasing the sampling rate of the measurement system. In
Sec. 2 the description of the standard estimator is given, including
the quantization error and the MSE of the jitter. It is followed by
Sec. 3, where the proposed sampling method is described and the
upper bounds on its MSE is derived. In Sec. 4 simulations are given
which confirm the theoretically derived bounds.

2. NON PERIODIC RTT MEASUREMENT

The RTT is the time of flight,i.e., the time a signal takes to be sent out
by the transmitter and to return from a passive RFID-tag, radar tar-
get, other reflecting device or an active receiver and transmitter com-
bination re-sending the signal. In order to increase the RTT estima-
tion accuracy,mmeasurement pulses are conducted with a measure-
ment period ofNT , whereN is an integer number and T is the sam-
pling clock period. Thereby, the jth pulse deviates from the nominal
pulse period NT/m by a random phase τj ∈ [0, NT/m − G[, re-
ferred to as non periodic measurement (NPM). G represents a guard
time to guarantee that consecutive pulses do not overlap.

In a noiseless system, the RTT is constant of duration D. Due
to channel imperfections, jitter adds on the RTT which is modeled
as follows: Consider the signal x(t) that is equal to 1 between trans-
mission and reception of a pulse in a noiseless system, i.e., x(t) = 1
for t ∈ [j NT/m + τj , j NT/m + τj + D], j = 1, . . . ,m, and
x(t) = 0 otherwise. To account for jitter on the RTT, we consider

r(t) = x(t) + n(t) , (1)

where n(t) is a rectangular signal with non-zero amplitude at rising
and falling edges of x(t), as depicted in Fig. 1. This yields a duration
of the jth RTT of

d(j) = D + w+[j] + w−[j] ,
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Fig. 1. Three individual pulse triggered RTT measurements cor-
rupted by noise.
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Fig. 2. RTT measurement with randomly sent pulses

where w+[j] and w−[j] are the jitter noise parts at the positive re-
spectively negative edge. According to [5], the probability density of
the jitter length is a Gaussian distribution w+[j], w−[j] ∼ N (0, σ).

For estimation, r(t) is sampled with the sample clock cl with
period T at discrete time steps r[l] = r(lT ). The pth averaged
estimate over m RTT duration’s is

D̂(p) =
T

m

N−1∑
i=0

r[i+pN ] =
T

m

N−1∑
i=0

x[i+pN ]+
T

m

N−1∑
i=0

n[i+pN ] .

(2)
This estimator is summarized in Fig. 2.

For the averaging process in (2), all m pulses and jitter contri-
butions are treated as one sum. Nevertheless, there exist individual
pulses and we analyze them individually before averaging is applied.
Additionally, the time discrete integration introduces a quantization
error dq[j]. Considering all noise contributions, a measured value of
the jth RTT is given by

d[j] = d(j) + dq[j] = D + dq[j] + w+[j] + w−[j] . (3)

Hence, the measurement error is

de[j] = d[j]−D = dq[j] + w+[j] + w−[j] . (4)

As commonly known, according to the Cramer Rao bound [12], the
MSE of the estimator in (2) with the identical estimation error (4)
yields for m independent and uncorrelated measurements is

e2 =
1

m
E
{
d2q[j]

}
+

1

m
E
{
w2

+[j]
}
+

1

m
E
{
w2
−[j]

}
. (5)

To characterize the quantization error E
{
d2q[j]

}
of the noise free

RTT, we consider the fractional part Df of the jth measurement of
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Fig. 3. Timing diagram of a random RTT measurement with discrete
time alignment.

the sampled version of x(t) (see Fig. 3), given by

Df =
D

T
−
⌊
D

T

⌋
. (6)

Assuming that τ = mod (τj , T ) is uniformly distributed in [0, T [,
we have as MSE of the quantization error [13]

E
{
d2q[j]

}
= d2q =

1

T

T∫
τ=0

d2q(t+ τ)dτ (7)

with dq = Df for τ ∈ [0, T − Df [ and dq = T − Df for τ ∈
[T −Df , T [. Therefore the MSE is

E
{
d2q[j]

}
= d2q =

1

T

T−Df∫
τ=0

D2
fdτ +

1

T

T∫
τ=T−Df

(T −Df )2dτ

= DfT −D2
f . (8)

The additive jitter is assumed identically distributed at the positive
and negative edge and the MSE comes to

E
{
w2
−[j]

}
= E

{
w2

+[j]
}
= E

{
w2[j]

}
.

Obviously, the jitter is also quantized which results in additive quan-
tization noise with an MSE ofE{w2

q [j]} (which is neglected in most
orther works), i.e.,

E
{
w2[j]

}
= σ2 + E{w2

q [j]} . (9)

In Fig. 4 the probability density functions of different jitter noise pro-
cesses are plotted to illustrate its influence on quantization. Within
the interval of ±T

2
the jitter is not altering the quantization of d[j]

given in (8). If the absolute value of the jitter is larger than T
2

, a quan-
tization error occurs with an error amplitude T . Hence, we have to
evaluate the probability Pe of false decisions based on the quantized
jitter.

The PDF of the quantized RTT has two parameters, the ampli-
tude x of the random phase and the jitter amplitude φ. The PDF of
the jitter amplitude is

pw(φ) =
1

σ
√
2π
e
− (φ−x)2

2σ2 (10)

with φ as jitter amplitude and x as uniformly distributed random
variable to consider all different realizations of the sampled RTT.
The PDF of x is a uniform distribution with px(v) = 1

T
for v ∈

[0, T [ and px(v) = 0 otherwise. As jitter and quantization are sta-
tistically independent, the joint PDF is

pw,v(v, φ) = pw(φ)px(v) =
1

T

1

σ
√
2π
e
− (φ−v)2

2σ2 . (11)
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Thus, the error amplitude can be either +T or −T and the error
probability for both cases is given by

Per (v) =

∞∫
ts+

T
2

pw,x(φ, v)dφ =
1

T

1

σ
√
2π

∞∫
ts+

T
2

e
− (φ−v)2

2σ2 dφ

(12)
with a quantizer threshold at ±T

2
. Furthermore, all existing realiza-

tions with a relevant amplitude variation between−T
2

and T
2

add up
to the error probability of

Pe(σ, T ) =

ts+
T
2∫

ts−T2

Per (v)dv =

ts+
T
2∫

ts−T2

∞∫
ts+

T
2

pw,x(φ, v)dφdv

=
1

T

ts+
T
2∫

ts−T2

1

σ
√
2π

∞∫
ts+

T
2

e
− (φ−v)2

2σ2 dφdv. (13)

After proceeding the integration, the error probability is

Pe(σ, T ) =
1

2
+

σ√
2πT

− σe
− T2

2σ2

√
2πT

− 1

2
erf
(

T√
2σ

)
. (14)

With (14) we find that the quantization MSE in (9) is

E{w2
q [j]} = Pe(σ, T )T

2 . (15)

Plugging (8), (9) and (15) in (5) yields the closed form expres-
sion of the MSE with

e2 =
1

m

(
DfT −D2

f + 2σ2 + 2Pe(σ, T )T
2) (16)

=
1

m

(
DfT −D2

f + 2σ2)+
2T 2

m

1

2
+
σ(1− e−

T2

2σ2 )√
2πT

− 1

2
erf
(
T√
2σ

) (17)

which is a tight bound for NPM.

3. PERIODIC RTT MEASUREMENT

In contrast to the previous NPM method, where m individual ran-
dom phase pulses are sent, we introduce a method using m periodic
pulses in this section. The pulses are grouped in a data packet of
length m in which is repeatedly sent at a specific packet rate cp.
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Fig. 5. Packet assisted RTT estimator

In standard digital communication systems each pulse in the packet
represents one bit or symbol. The proposed method can be applied
when the receiver is able to detect the reception of each single sym-
bol in the packet. In Fig. 5, this periodic RTT measurement is de-
picted. It shows a system which sends out data packets with a length
of m-bits. Each of these bits has to be separately detectable with
identifiable edges at each bit. To be more general, the m individual
pulses don’t have to be necessarily information bits, any marker or
other transmit pulse can be used if the time of flight is not mutually
influenced. When the pulses are sent out, the a counter is incre-
mented, triggered by the rising edge of each bit. Subsequently, the
individual bits are received after RTT. Each rising edge of the re-
ceived bit stream decrements the counter in Fig. 5. Transmitter, re-
ceiver and counter are implemented in the time continuous domain
and therefore sampling has to be performed at the counter output
r(t). The sampling of the continuous-time measurement signal r(t)
is performed at t = lT with the sampling clock rate cl and therefore
r[l] = r(lT ). We consider cl > cb throughout the section. The m
bits are sent at a rate cb, which is lower than the sampling rate cl.
Moreover, cl and cb are coupled by a prime relation. To achieve this
prime relation, the clock cl is reduced by a prime number N to the
packet rate cp. Based on this setup we use periodic prime relation
measurement (PPM) as abbreviation. In order to generate the bit rate
cb, the intermediate clock cp is interpolated by a non prime factorm,
which is the length of the packet. Usuallym is a power of two, origi-
nated by period doubling. The summation in Fig. 5 is calculating the
duration of all RTT within one measurement period N by summing
up and multiplying the result with T

m
. The summation is restarted

after N sample intervals at a rate of cp, i.e., for each packet. With
this rate, estimates D̂ of the RTT are calculated by (2) where p is
the packet counter. As in NPM, the sampled signal is modeled with
additive noise r[l] = x[l] + n[l]. In the following we use (2) with
T
m

= P
N

for the estimation of PPM by

D̂(N,P, T ) =P
1

N

N−1∑
l=0

r[l] =
P

N

N−1∑
l=0

x[l] +
P

N

N−1∑
l=0

n[l].

Following [14], we use the DC component resulting from a Fourier
transform to describe the sum over x[l] in the previous equation and
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we write

D̂(N,P, T ) =
P

N
X(0) +

P

N

N−1∑
l=0

n[l]. (18)

The estimation is corrupted by jitter (3) and aliasing [14]. Therefore,
the MSE of the RTT estimator is derived as function of D,P, T and
N . Hence, it is given as the expectation of the squared error

e2(D,N,P,T )=E{|D − D̂(N,P, T )|2} (19)

=E

{∣∣∣∣D− PN X(0)

∣∣∣∣2
}
+E


∣∣∣∣∣ PN

N−1∑
l=0

n[l]

∣∣∣∣∣
2


=e2D(D,N,P, T ) + e2n(D,N,P, T ).

Because n[l] are independent random variables similar to those of (2)
we can reuse the previous results for the error contribution of the jit-
ter. In [14] the error analysis of the duration estimation is performed
and we can apply these results to the PPM as

e2D(D,N,P,T )=

∞∑
k=−∞\0

P 2

N2
sin2

(
πkD

P

)
sin2(πNk T

P
)

(kπ)2 sin2(πk T
P
)
. (20)

With m = NT
P

and m ∈ N (20) yields

e2D(D,N,P,T )=

∞∑
k=−∞\0

P 2

N2
sin2

(
πkD

P

)
sin2(πmk)

(kπ)2 sin2(πkm
N
)
,

(21)
where the numerator sin(πkm) is zero for all k. Obviously, this
holds for all terms of the sum, if the denominator is not zero, hence
N has to be a prime number. If k ∈ Z \ 0 and N is a finite number,
still infinite contributions at multiples of N exist, where a fraction
of terms in (21) result in a division zero by zero. This was analyzed
further in [14]. There, we have shown that e2D can be rewritten as

e2D(m,T,D) =

∞∑
i=1

2T 2

(imπ)2
sin2

(
πimD

T

)
. (22)

Because | sin()| is always less than one, an upper bound for (22) is
given with | sin()| = 1 which implies that the argument of sin() is
πD
T
im = π

2
+ vπ = π 1

2
(1 + 2v). It holds if D

T
= 1

2
and i is an

odd number with v ∈ N. Finally, we derive an upper bound for (22)
with odd contributions of i by

e2D(m,T,D) ≤ 2T 2

(mπ)2

∞∑
v=1

1

(1 + 2v)2
=

T 2

4m2
(23)

which yields the error bound if N is a prime number

e2 ≤ T 2

4m2
+
2σ2

m
+
2T 2

m

1

2
+
σ(1− e−

T2

2σ2 )√
2πT

−1
2

erf
(
T√
2σ

) .

(24)

When (17) and (24) are compared, it can be clearly seen that the
quantization error decays ∼ 1

m2 instead of ∼ 1
m

if a periodic mea-
surement with N being a prime number (PPM) is used.

0 20 40 60 80 100 120

10−4

10−3

10−2

10−1

100100

101

m

e2(
T2

12

)
a) NPM & PPM for σa

upper bound
simulation

b) NPM for σb
upper bound
simulation

b) PPM for σb
upper bound
simulation

Fig. 6. Comparison of MSE normalized to T 2/12 for the two pre-
sented methods with repeated measurements under different noise
conditions.

4. SIMULATION RESULTS

Monte Carlo simulations are used to compare NPM and PPM for
RTT estimation with respect to the MSE . The simulation setup
covers two different jitter levels. Each setup was performed with
5000 random phases and the RTT was kept constant with D =
7.11011056786 T .
a) The root mean square error (RMS) of the jitter is ten times the
quantization error, σa = 10T/

√
12. In this case NPM and PPM

perform similar. The jitter is dominating the resulting MSE and it
decays with 1

m
according to (17) respectively (24), c.f. Fig. 6.

b) Both estimators are used in a simulation where the jitter is very
low compared to the quantization noise, σb = 10−3T/

√
12. In

this case, the difference between estimators NPM and PPM are re-
markable because the quantization noise is limited due to (24). The
upper bound of the periodic estimator PPM is decaying with 1

m2 and
the simulated results are sometimes even better because some values
of m are optimal to estimate individual values of RTT. A compre-
hensive study on the optimal selection of m will be part of further
research.

5. CONCLUSION

In this work we proposed a sampling scheme to significantly increase
the measurement accuracy of RTT measurements in quantized sys-
tems. For profound analysis, we derived closed form expressions
of the achievable MSE and conducted numerical evaluations. Most
notably, for m repeated measurements in low jitter conditions, the
proposed scheme has a scaling behavior of the MSE of 1

m2 instead
of 1

m
for conventional systems. Thereby, conventional systems in

which the sampling clock and the pulse repetition rate have a inte-
ger relation, require a pulse transmission at random phase in order to
achieve its best scaling behavior of 1

m
. The here proposed method

in which the sampling clock is chosen as fractional prime relation to
the pulse repetition, always outperforms conventional systems and
additionally supports periodic pulse transmission as in packet-based
communication systems. Hence, it is well suited to improve many
existing RTT measurement systems.
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hard Hancke, Süleyman Kardaş, Chong Hee Kim, Cédric Lau-
radoux, Benjamin Martin, Jorge Munilla, Alberto Peinado,
et al., “Security of distance-bounding: A survey,” ACM Com-
puting Surveys (CSUR), vol. 51, no. 5, pp. 94, 2018.

[7] T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer,
and R. Weigel, “Roundtrip-time-of-flight based localization of
passive multi-standard rfid-tags,” in 2012 IEEE International
Conference on Wireless Information Technology and Systems
(ICWITS), Nov 2012, pp. 1–4.

[8] S. Schuster, S. Scheiblhofer, R. Feger, and A. Stelzer, “Signal
model and statistical analysis for the sequential sampling pulse
radar technique,” in 2008 IEEE Radar Conference, May 2008,
pp. 1–6.

[9] R. Keating and D. Guo, “Multiuser simultaneous two-way
ranging,” IEEE Transactions on Wireless Communications,
vol. 17, no. 8, pp. 5107–5119, Aug 2018.

[10] B. Liu, H. Chen, Z. Zhong, and H. V. Poor, “Asymmetri-
cal round trip based synchronization-free localization in large-
scale underwater sensor networks,” IEEE Transactions on
Wireless Communications, vol. 9, no. 11, pp. 3532–3542,
November 2010.

[11] M. Lauridsen, L. C. Gimenez, I. Rodriguez, T. B. Sorensen,
and P. Mogensen, “From LTE to 5G for Connected Mobility,”
IEEE Communications Magazine, vol. 55, no. 3, pp. 156–162,
March 2017.

[12] J.V. Candy, Model-based signal processing, Adaptive and
learning systems for signal processing, communications, and
control. IEEE Press, 2006.

[13] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Pro-
cessing, Pearson Education, Limited, 2013.

[14] H.-P. Bernhard, B. Etzlinger, and A. Springer, “Error character-
ization of duty cycle estimation for sampled non-band-limited
pulse signals with finite observation period,” in 24rd European
Signal Processing Conference (EUSIPCO 2016), Budapest,
Hungary, Aug 2016, pp. 2136–2140.

4633


		2019-03-18T11:17:31-0500
	Preflight Ticket Signature




