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Abstract—In this paper, a novel scheme is reported to adapt
radio maps to environmental dynamics in an online fashion by
combining crowdsourcing and gaussian process regression (GPR).
Specifically, a Marginalized Particle Gaussian Process (MPGP)
is adopted to recursively fuse crowdsourced fingerprints with
an existing offline radio map. The advantages of the proposed
scheme lie in the efficiency and scalability in comparison with
the traditional approaches. Extensive experiments are carried out
in a real scenario of nearly 1000 m2 during five months, and a
comparison is made with several existing popular solutions. It is
shown that the proposed scheme outperforms its counterparts in
terms of both robustness and accuracy.

I. INTRODUCTION

WiFi fingerprint-based localization is one of the most at-
tractive and promising solution for indoor localization, and
great efforts [1]–[3] have been devoted. The fingerprint-based
indoor positioning system (IPS) demands a labor-intensive and
time-consuming site survey in the offline phase for building
a radio map. In order to reduce the offline workload, var-
ious crowdsourcing-based approaches [4]–[6] were reported
to leverage daily activities of volunteers and pedestrian dead
reckoning (PRD) [7]–[9] to automatically collect fingerprints;
recently, the Gaussian process regression (GPR) based ap-
proaches [10] have gained much attention since the amount
of RSS measurements required can be substantially decreased.
However, GPR suffers from scalability on account of inverting
a matrix with its order being the total number of crowdsourced
fingerprints, which can be huge with time and space increasing.

The localization performance of a fingerprint-based IPS
often degrades over time due to environmental dynamics.
As such, a great amount of researches have been conducted
to produce update-to-date radio maps. The simple solution
only considers the changes of APs and replaces the outdated
fingerprints in radio maps [11]–[13]. The advanced solutions
incorporate new RSS measurements into existing radio maps
so as to adapt to environmental dynamics. In [14], LuMA was
proposed to model the problem of updating a radio map as the
transfer learning problem based on dimensionality reduction,
which learns a mapping from an old radio map to a new
one in a low-dimensional space. In [15], a dynamic online-
calibration scheme uses GPR with the log-distance path loss
model to construct and calibrate radio maps, but requires re-
estimating the parameters by maximizing the given likelihood
function. A WiFi-based non-intrusive IPS, termed WinIPS,
that enables automatic online radio map construction and
adaptation was proposed in [16] for calibration-free indoor

localization. Additionally, in [17], AcMu makes use of realtime
RSS measurements from a static smartphone to automatically
update radio maps by modeling the underlying relationship
between nearby RSS measurements, which relies on the move-
ment detection of the smartphone.

Although these efforts have made it promising to efficiently
construct and update radio maps, efficiently fusing crowd-
sourced fingerprints is still challenging. To address this issue,
this paper adopts the Marginalized Particle Gaussian Process
(MPGP) to recursively adapt the radio map by using con-
tinuously crowdsourced fingerprints whose location labels are
estimated based on the current radio map. The advantages of
the MPGP lies in that crowdsourced fingerprints are recursively
processed and their locations are not necessarily aligned with
the radio map. Finally, extensive experiments are carried out
in a real scenario during a five-month period of time, and it
is shown that, the proposed scheme significantly outperforms
several existing popular solutions in terms of both localization
accuracy and robustness.

II. ONLINE RADIO MAP UPDATE

Throughout this paper, letters in bold denote matrix or
vector; E(·) and V(·) denote the expectation and variance
operators, respectively; | · | denotes the determinant operator;
‖ · ‖ denotes the Euclidean norm operator; T denotes the
transpose operator; I is an identity matrix of proper order n.

A. GPR

Consider the following observation model

y = f(x) + v, (1)

where v ∼ N (0, σ2
n) represents the i.i.d. (independent, identi-

cally distributed) noise; y denotes the observation, i.e. a WiFi
RSS measurement, given a particular input feature x ∈ R2,
i.e. 2-dimensional (2D) location coordinates.

The latent function, f(x), can be stated as a Gaussian
process (GP), namely

f(x) ∼ GP(m(x), k(x,x′)), (2)

where m(x) and k(x,x′) are the mean function and covariance
function, respectively.

According to [10], the mean function can be modelled as a
quadratic polynomial of x, namely

m(x) = xTAx + bTx + c, (3)
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where A = [A11,A12; A12,A22], b = [b1; b2] and c are
coefficients, and the covariance function can be modelled using
the squared exponential kernel function, namely

k(x,x′) = σ2
f exp

(
−‖x− x′‖

2l2

)
, (4)

where σ2
f and l denote the signal variance and scale parameter.

Given n location labels X = [ x1 · · · xn ] with xi ∈
R2, i = 1, · · · , n, the corresponding observations, i.e. RSS
measurements from an arbitrary access point (AP), are defined
to be y = [ y1 · · · yn ]T . It is evident that

y|X ∼ N (m(X),K(X,X) + σ2
nI), (5)

where the element at the i-th row and j-th column of the
n× n matrix K(X,X′) equals to k(xi,x

′
j) with xi being the

i-th column of X and x′j being the j-th column of X′.
Let the unknown parameters form a vector θ =

[A11,A22,A12,b1,b2, c, σn, σf , l]
T , also termed hyperpa-

rameters of the GP. Since any finite number of collections
sampled from a GP follow a joint Gaussian distribution [18],
the log likelihood of the observations in y is given by

logL(y; X, θ) = −n
2

log 2π − 1

2
log |(K(X,X) + σ2

nI)|

−1

2
(y −m(X))T (K(X,X) + σ2

nI)−1(y −m(X)). (6)

The hyperparameters θ can be estimated by maximizing (6),
such that the mean and variance of RSS measurements at any
location, say x∗, can be predicted through GPR. As such, the
radio map can be interpolated with RSS measurements at only
a relatively small number of locations.

B. State Space Model

In order to estimate both the hyperparameters θ and hidden
function values f in an online fashion, we define a new state
space model in what follows.

Firstly, to filter the hidden static hyperparameters, an artifi-
cial evolution is added using kernel smoothing which guaran-
tees the estimation convergence [19]

θt = bθt−1 + (1− b)θ̄t−1 + st−1, (7)

where b = (3δ − 1)/(2δ), δ is a discount factor which is
typically around 0.95 − 0.99, θ̄t−1 is the Monte Carlo mean
of θ at t− 1, and st−1 ∼ N (0, r2Σt−1), r2 = 1− b2, Σt−1 is
the Monte Carlo variance matrix of θ at t− 1.

Secondly, to explore the relation between the crowdsourcing
RSS measurements at t − 1 and t, define Xc

t = [Xt,X∗]
and f ct = f(Xc

t), where Xt is the location labels of
the crowdsourcing RSS measurements at t and X∗ denotes
the locations of the fingerprints in the radio map. Since
f(x) ∼ GP (m(x), k(x,x′)), then the prior distribution
p(f ct , f

c
t−1|Xc

t−1,X
c
t , θt) is jointly Gaussian.

Then, according to the conditional property of the Gaussian
distribution, we can obtain p(f ct |f ct−1,Xc

t−1,X
c
t , θt) is Gaus-

sian with
N (G(θt)f

c
t−1 + F(θt),V(θt)), (8)

where

G(θt) = Kθt(X
c
t ,X

c
t−1)K−1θt (Xc

t−1,X
c
t−1), (9)

F(θt) = mθt(X
c
t)−G(θt)mθt(X

c
t−1), (10)

V(θt) = Kθt(X
c
t ,X

c
t)−G(θt)Kθt(X

c
t ,X

c
t−1)T .(11)

Hence, the following state equation can be derived by trans-
forming the conditional density in (8) into a linear equation
of the function value with additive Gaussian noises vft ∼
N (0,V(θt)):

f ct = G(θt)f
c
t−1 + F(θt) + vft . (12)

Moreover, the observation equation could be directly ob-
tained from the RSS measurements at t

yt = Htf
c
t + vyt , (13)

where Ht = [I,0] makes Htf
c
t = f(Xt), the order of I is nt

representing the number of noisy location labels in Xt, and
vyt is additive Gaussian noise satisfying N (0, σ2

nI).
The state space model is specified by (7), (12) and (13).

C. Online Updating with MPGP

In contrast to the traditional GPR inferring hidden func-
tion values in an offline manner, we adopt the online fil-
tering framework proposed in [19] to simultaneously learn
the hyperparameters and estimate hidden function values,
i.e. p(f ct , θ1:t|X1:t,X∗,y1:t), by combining Kalman filter into
particle filter.

The whole algorithm is summarized as follows:
1) For each of the particle, say the i-th one with i =

1, 2, · · · , N
• Drawing θit ∼ p(θt|θ̃it−1) according to (7);
• Using θit to compute k(x,x′), G(θit),F(θit),V(θit)

and σ2
nI in (9), (10), (11) and (13);

• Kalman predicting, namely computing f̃ c,it|t−1, P̃
c,i
t|t−1

with f̃ c,it−1|t−1, P̃
c,i
t−1|t−1 by

f ct|t−1 = G(θt)f
c
t−1|t−1 + F(θt), (14)

Pc
t|t−1 = G(θt)P

c
t−1|t−1G(θt)

T + V(θt).(15)

• Kalman updating, namely computing f̃ c,it|t , P̃
c,i
t|t with

f̃ c,it|t−1, P̃
c,i
t|t−1 by

Γt = Pc
t|t−1H

T
t (HtP

c
t|t−1H

T
t + σ2

nI)−1,(16)
f ct|t = f ct|t−1 + Γt(yt −Htf

c
t|t−1), (17)

Pc
t|t = Pc

t|t−1 − ΓtHtP
c
t|t−1. (18)

where Γt is the Kalman gain.
• Weighting, namely computing the importance

weight w̄it with f̃ c,it|t−1, P̃
c,i
t|t−1, σ

2
nI by;

w̄it = wit−1 × p(f ct|t|θ1:t,X1:t,X∗,y1:t)p(θt|θt−1)

×N (Htf
c
t|t−1,HtP

c
t|t−1H

T
t + σ2

nI), (19)

where p(θt|θt−1) and p(f ct|t|θ1:t,X1:t,X∗,y1:t) can
be computed using (7) and (12) respectively.
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Fig. 1. The floor plan of experimental areas.

2) Normalizing the weight wit = w̄it/Σ
N
j=1w̄

j
t ;

3) Hyperparameter and hidden function value estimation:

θ̂t = ΣNi=1w
i
tθ̃
i
t,

f̂ ct|t = ΣNi=1w
i
t f̃
c,i
t|t ,

P̂c
t|t = ΣNi=1w

i
t(P̃

c,i
t|t + (f̃ c,it|t − f̂ ct|t)(f̃

c,i
t|t − f̂ ct|t)

T ),

implying that

f̂∗t|t = H∗t f̂
c
t|t,

P̂∗t|t = H∗t P̂
c
t|t(H

∗
t )
T ,

where H∗t = [ 0 Im ] is an index matrix to obtain the
function value estimation at X∗;

4) Resampling: for i = 1, 2, · · · , N , resample θit, f
c,i
t|t ,P

c,i
t|t

with respect to the importance weight wit to obtain
θ̃it, f̃

c,i
t|t , P̃

c,i
t|t for the next step;

5) Increasing t by 1 and repeat Step 1).
At each iteration, the MPGP uses a small training subset to

estimate f(X∗) by Kalman filters, and learn hyperparameters
online by weighted particles.

In order to launch the aforementioned algorithm at t = 1,
we need to initialize the values of θ̃i0, f̃

c,i
0|0, P̃

c,i
0|0 with i =

1, 2, · · · , N . Therefore, the first set of crowdsourced RSS
measurements is utilized to produce the initial estimate of the
hyperparameters θ0 as well as the mean E(f c0 ) and variance
V(f c0 ) at Uc

0. Then, let θ̃i0 = θ0, P̃c,i
0|0 = V(f c0 ), and draw f̃ c,i0|0

from N (E(f c0 ),V(f c0 )).

III. PERFORMANCE EVALUATION

In this section, extensive experiments are conducted to
thoroughly evaluate the performance of the proposed method.

A. Experimental Setup

In the experiments, realistic RSS measurements are collected
in a large open space, i.e. the Reading Room on the 3rs floor of
the library building at Inner Mongolia University, which covers
a total area of nearly 1000 m2 and includes 57 bookracks with
the height of around 2 m as well as a number of big and long
desks and chairs, as shown in Fig. 1. The space is divided
by a regular lattice with the interval of 1 m and thus totally
includes 938 lattice points as reference points.

The experiments lasted five months. Specifically, 10 sets
of RSS measurements were collected with different intervals

(e.g. one day, one week, one month, two months, and etc.)
at different times (e.g. weekday, weekend, holiday, daytime
and evening) to fully take into consideration environmental
dynamics. At each time, a student arbitrarily traversed the
Reading Room as usual to produce training RSS measurements
with a smartphone (HUAWEI P7) held in front of his chest,
and additionally, walked 7 trajectories between 20 m and 30 m
to produce testing RSS measurements by accurately labelling
their locations. Note that an Android APP was developed by
us to facilitate the collection of RSS measurements.

In the experiments, 22 APs are detected by the smartphone.
A coarse-grained radio map is initially constructed in the
offline phase by using the training RSS measurements (whose
accurate location labels are available) collected in the first time
based on the GPR approach; then, according to the chrono-
logical order, the training RSS measurements collected in the
other 9 times are employed to update or produce the radio
map in 9 rounds by using different methods; the corresponding
testing RSS measurements are used for localization by using
the weighted k nearest neighbor (WKNN) method with k = 6.

Several popular approaches are implemented for compar-
ison. Two GPR based approaches [15] with zero mean and
polynomial mean function like (3) respectively, i.e. Zero Mean
GPR (ZM GPR) and GPR, are taken into account. These two
approaches just abandon existing radio maps and generate
brandnew radio maps as long as new training RSS measure-
ments are available, namely that new RSS measurements are
not fused with existing radio maps. Since AcMu in [17] mainly
relies on the fusion method, i.e. the partial least squares regres-
sion (PLSR) method, and requests realtime RSS measurements
at certain reference points with static smartphones, which does
not match with the the scenario considered in our experiments,
a PLSR based radio map updating method similar to AcMu
is implemented with 200 points randomly selected as pseudo
reference points by averaging the training RSS measurements
at their vicinities (i.e. within 2 m). In order to provide as good
emulation as possible, the training RSS measurements in the
current round and past one round are used for averaging.

The experiments are carried out in Matlab. The space is
divided into 10 subregion with the area of around 100 m2,
and in each subregion, MPGP is implemented with the particle
number of 500.

B. Results

In order to validate the effectiveness of the proposed scheme,
comparisons with other three approaches are made in terms of
both RSS prediction and localization.

TABLE I
COMPARISON OF THE MEAN AND STANDARD DEVIATION OF THE RSS

PREDICTION ERRORS PRODUCED BY DIFFERENT APPROACHES.

Method RSS Prediction Error (dBm)
Average Standard deviation

MPGP 6.94 1.99
PLSR 14.08 3.87

ZM GPR 28.67 5.80
GPR 11.31 2.77
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Fig. 2. Comparison of the RSS prediction errors with respect to different times.
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Fig. 3. Comparison of localization errors produced by different approaches at different times.

In the first place, the RSS prediction performance is e-
valuated. Define the RSS prediction error to be the absolute
difference between that predicted by one approach and ground
truth. Note that, since acquiring the ground truth of the
expected RSS measurement at any reference point is hard or
even impossible, it is approximately evaluated by averaging
the RSS measurements within 2 m of this reference point.

The means and standard deviations of the RSS prediction
errors are listed in Table I, and the cumulative density function
(CDF) of the RSS prediction error with respect to one month
(i.e. NO. 2 round), two months (i.e. NO. 4 round) and five
months (i.e. NO. 9 round) are illustrated in Fig. 2. As can
be seen, the RSS prediction errors are less than 7 dBm for
the proposed scheme, but doubled or even worse for the other
three counterparts. More importantly, the standard deviations
associated with the proposed scheme are also much less than
those of the counterparts. Therefore, it can be concluded that
the proposed scheme not only achieves relatively good RSS
prediction performance, but also provides robust prediction, in
comparison with the other approaches.

In the second place, the localization performance of different
approaches is evaluated. The localization errors produced by
four approaches with respect to 9 rounds of radio map updating
are plotted in Fig. 4, and their CDFs at different times are
illustrated in Fig. 3. As can be seen, the average localization
error of the proposed scheme gradually decreases from 4.98
m to 3.93 m, whereas those of the other three approaches
mainly fluctuate between 4.5 m and 6 m. Specifically, ZM GPR
derives worst performance, PLSR appears to degrade with time
elapsing, and GPR suffers from high fluctuation.

In summary, the extensive experiments validate the superi-
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Fig. 4. Comparison of localization errors produced by different approaches
with respect to 9 rounds.

ority and robustness of the proposed scheme.

IV. CONCLUSION

This paper proposed to recursively update radio maps using
crowdsourced fingerprints in an online fashion. To be specific,
MPGP was adopted to fuse crowdsourced fingerprints with
existing radio map without the alignment of location labels.
Extensive experiments were conducted, and a thorough com-
parison reveals that the proposed scheme outperforms the other
three approaches in the literature in terms of both localization
accuracy and robustness.
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