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ABSTRACT

The paper proposes a novel distributed, sampled-data, event-
triggered algorithm with quantized information exchange for
average consensus (Q-CEASE) in multi-agent/multi-sensor
networks. Q-CEASE communicates quantized information
with its neighbouring nodes only if a discretized event-
triggering condition is satisfied. Both design and imple-
mentation of Q-CEASE are distributed and do not require
a fusion center. The design stage determines its operat-
ing region in terms of the sampling period and transmission
thresholds for the constituent nodes. A minimum exponential
rate for consensus convergence is guaranteed using the Lya-
punov stability theorem. The performance of the Q-CEASE
algorithm is quantified through Monte-Carlo simulations on
randomized networks.

Index Terms–Distributed average consensus, Event-
triggered transmission, Quantized information.

1. INTRODUCTION

Distributed average consensus is a major step in collaborative
signal processing applications, including gossip algorithms [1],
distributed inference [2], multi-agent coordination [3], sensor
calibration [4], and node counting in multi-agent networks [5,
Section 3.3]. While traditional distributed consensus imple-
mentations are often based on continuous information ex-
change between the neighbouring nodes, in recent years there
has been an overwhelming interest in periodic and/or event-
triggered schemes that are able to reduce the transmission
load and save scarce energy of the nodes. Numerous event-
triggered average consensus (ETAC) schemes have recently
been developed based on predefined objectives [6–10]. Despite
offering some advantages, existing event-triggered consensus
strategies face at least one of the following three shortcom-
ings.

First, the event-triggering condition in many ETAC
schemes should be continuously monitored during the av-
erage consensus process. Along with the implementation
difficulties of such approaches, constant measurement and
monitoring of the event-triggering condition waste valuable
energy resources available at the nodes [11]. In order to relax
this limitation, sampled-data approaches have been proposed
to enable the event-triggering condition to be monitored only
at periodic samples of the system [12]. Introducing a sampler
to the scheme, however, makes convergence analysis of the
closed-loop system difficult.

Secondly, in the context of ETAC it is often assumed that
the information can be transmitted with infinite precision. In

practice, however, the information is quantized to a finite
number of levels [13]. It is, therefore, necessary to study the
effect of quantization error on average consensus.

Thirdly, an important design criteria in distributed net-
works is the convergence rate of the proposed implementa-
tion [14]. In this regard, a minimum convergence rate guar-
antee is of great value. Most existing sampled-data ETAC ap-
proaches, however, are only designed with an asymptotic con-
vergence rate. The rate of convergence remains unknown [9].
In general, one expects that higher the connectivity in the
network faster should be the convergence. A mathematical
characterization of this expectation along with the determi-
nation of the sampling period and event-triggering threshold
is an interesting and yet a disregarded challenge.

To the best of our knowledge, there exists no implementa-
tion for sampled-data event-triggered average consensus that
uses quantized data and guarantees a rate of convergence. To
address this gap, we extend our CEASE framework [15] by
incorporating a quantizer in the transmission scheme. It is
worth mentioning that many distributed implementations of
different signal processing applications [16–19] require a fu-
sion center for the parameter design stage and/or the termi-
nation step. However, the implementation of the proposed Q-
CEASE (quantized collaborative event-triggered average con-
sensus sampled-data) algorithm in this paper is distributed
even for the design stage. A fusion center is not needed.

2. NOTATION AND PROBLEM STATEMENT

Matrices and vectors are denoted by bold alphabets, and
scalars by normal fonts. Notation (·)T represents transpose
of the argument. 1N and 0N are column vectors of order N
with, respectively, one and zero entries. For a network with N
nodes, A = {ai,j}N×N is the weighted adjacency matrix; L is
the Laplacian matrix; λ2 and λN are, respectively, the second
smallest and the largest eigenvalues of L; and Ni is the neigh-
bouring set for node i. A uniform quantizer q(·) : R→ δZ with
a quantization level δ > 0 is defined by q(x) =

⌊
xδ−1 + 0.5

⌋
δ,

where the operation b·c is the greatest integer less than or
equal to the argument. For a uniform quantizer with quanti-
zation level δ, it holds that | q(x)−x | ≤ 0.5 δ, [9].

We use the first-order multi-agent system given below to
reach distributed average consensus on an initially localized
parameter xi(0), [20],

ẋi(t) = ui(t), (1 ≤ i ≤ N), (1)
where ui(t)∈R is the proposed distributed control signal (to
be introduced later), which forces the agents to reach the
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Fig. 1: Proposed Q-CEASE for node i, iteration n, and the previously quantized event q(xi(niki
T )). Compared to implemen-

tation [15], the shaded quantization block adds an additional level of complexity.

average of xi(0), for (1 ≤ i ≤ N), i.e.,
lim
t→∞
|xi(t)− x̄(0) |= 0, (1≤ i≤N), (2)

where x̄(t) = 1
N

∑N

i=1 xi(t).

Assumption 1. The multi-agent system (1) is configured as
an undirected (symmetric) connected network.

To reach average consensus, node i shares its state infor-
mation within its neighbourhood Ni. In order to reduce the
amount of information exchange and preserve the allocated
on-board energy available at each agent, a localized event-
detector is incorporated at each node. The event-detector
is responsible to monitor an ‘event-triggering condition’ (to
be introduced later) to determine whether or not to trans-
mit the state of agent i. Only if the event-triggering con-
dition is satisfied, an event is triggered and node i trans-
mits its state value. Since constant-time monitoring of the
event-triggering condition is energy consuming and often not
practical, a local sampler (with sampling period T ) is used
to sample the state value xi(t) and provides discrete sam-
ples xi(nT ), (n ∈ N). Therefore, the event-detector only mon-
itors a discretized condition with a frequency of T−1 Hz.
Due to the finite word length limitation, it is not possible to
transmit the precise values of the states. Therefore, a uniform
quantizer (with quantization level δ) is incorporated at each
node to quantize the state value before being transmitted.
Let nik0T, n

i
k1T, . . . denote the time sequence at which events

are triggered at node i. We denote the most recent event of
node i by x̂i(nT ),xi(niki

T ), t∈ [niki
T, niki+1T ). Using the

quantized values of the most recent events, the following con-
trol signal is generated to enable consensus at node i

ui(t) = −Xi(nT ), (1 ≤ i ≤ N), (3)
where Xi(nT ) =

∑
j∈Ni

aij( q(x̂i(nT ))− q(x̂j(nT )) ) is the dis-

agreement value for node i. Based on the definition of the uni-
form quantizer, it holds that q ( x̂i(nT ) ) = x̂i(nT ) + δ̃i(nT ),
where | δ̃i(nT ) |≤ 0.5 δ. The disagreement value Xi(nT ) is
used by the event detector. More precisely, for a given event
instant t=niki

T , the next event for agent i is triggered
at t=niki+1T , with niki+1 satisfying the following event-
triggering condition
niki+1 = min

n
{n | n > niki

, |ei(nT )|−φ |Xi(nT )| ≥ 0}, (4)

where ei(nT ) = x̂i(nT )−xi(nT ) is the transmission error for

node i. Scalar φ > 0 is the transmission threshold to be de-
signed. The block diagram for the proposed Q-CEASE algo-
rithm is shown in Fig 1.
Design objectives: The design objectives to be investigated
in this paper are fourfold: (i) A sampled-data scheme is often
translated to a time-varying time-delay in the multi-agent
system [11]. But a large sampling period T (or, equivalently
a large time-delay) can endanger stability of the closed-loop
system. Therefore, the maximum allowable sampling pe-
riod T that guarantees average consensus is of great interest.
(ii) From (4), it is clear that if φ→0, the event-triggered
sampled-data scheme reduces to a sampled-data alone sys-
tem studied previously in [21]. On the other hand, an ex-
tremely large value for φ may prevent average consensus
due to insufficient information exchanges in the network.
Hence, the maximum allowable value for φ (that reduces
frequency of the events as much as possible) is of paramount
interest. (iii) Since the state value x̂i(nT ), (1≤ i≤N), is
quantized before transmission, exact average value cannot be
reached [9]. The upper-bound error for the proposed scheme
should, therefore, be known precisely. (iv) In contrast to [22]
where an asymptotic consensus convergence rate is studied,
in this paper we analyze the convergence rate of the proposed
scheme. In particular, we are interested in determining the
relationship between the minimum consensus convergence
rate, sampling period T , and transmission threshold φ.

We note that the upped-bounds for T and φ must only
contain distributed network parameters. Otherwise, a fusion
center is required to compute T and φ which vastly degrades
practicability the implementation. In addition, unlike [23],
which assumes a discrete-time model for the agents and ig-
nores system dynamics during the sampling intervals, this pa-
per presents an analysis for the sampling rate and its impact
on stability of the closed-loop system.

3. THE PROPOSED Q-CEASE ALGORITHM
Let x(t) = [ x1(t), . . . , xN(t) ]T , e(t) = [e1(t), . . . , eN(t)]T, u(t) =
[u1(t), . . . , uN(t) ]T , x̂(t) = [ x̂1(t), . . . , x̂N(t) ]T , δ̃(t) =
[ δ̃1(t), . . . , δ̃N(t) ]T. Then, it also holds that e(t) = x̂(t)−x(t).

Moreover, x̄(t) = 1
N
1TNx(t). Combining (1) with (3) leads

to the following close-loop system
ẋ(t) = −L q ( x̂(nT ) ), (5)

where L is the Laplacian matrix. From Assumption 1, it
holds that L1N =0N and 1TNL=0TN . Therefore, ˙̄x(t) =

4615



Algorithm 1 . The proposed Q-CEASE Algorithm.
I. Parameter Design: (D1 -D2)
D1. Use distributed approaches [24, 25] to locally estimate
λ2, and λN . Run an average consensus to agree on ζ.

D2. Each node chooses a sampling period T and a transmis-
sion threshold φ from (10).

II. Execution: (E1 and E2)
E1. All agents transmit their quantized initial state val-

ues q(xi(0)) to the neighbours.
E2. Using T and φ selected within (10), the states of the

agents approach average consensus using implementation
in Fig. 1 with a maximum quantization error given in (11).

1
N
1TN ẋ(t) =− 1

N
1TNL q ( x̂(nT ) ) = 0. Since ˙̄x(t) = 0, we con-

clude that x̄(t) = x̄(0). Based on this fact, we define the
following variable

r(t) = x(t)− x̄(t)1N . (6)
From (6), if ‖r(t)‖ → 0, then ‖x(t) − x̄(t)1N‖ → 0 which
leads to average consensus. Therefore, the average con-
sensus problem for system (5) is equivalent to the stabil-
ity problem of the system expresses as r(t). To this end,
one begins with ṙ(t) = ẋ(t) =−L q ( x̂(nT ) ). Therefore,
ṙ(t) =−Lq (x(nT ) + e(nT )) =−L

(
x(nT )+e(nT )+δ̃(nT )

)
.

Using (6), ṙ(t) =−L ( r(nT ) + x̄(0)1N + e(nT ) + δ̃(nT ) ),
which leads to the following expression

ṙ(t) = −L ( r(nT ) + e(nT ) + δ̃(nT ) ). (7)
For the uniform quantizers, it holds that

‖δ̃(nT )‖ ≤ 0.5
√
Nδ. (8)

On the other hand, between two consecutive events, one can
obtain |ei(nT )|≤ φ |Xi(nT )| . We can further revise this in-
equality in the global sense as ‖e(nT )‖ ≤ φ ‖Lq(x̂(nT ))‖, or
equivalently ‖e(nT )‖≤ φ ‖Lr(nT )+Le(nT )+Lδ̃(nT )‖. Un-
der constraint φ≤ 1

‖L‖ , the former condition on e(nT ) leads
to the following inequality

‖e(nT )‖ ≤ α ‖r(nT )‖+ 0.5α
√
N δ, (9)

where α= φ‖L‖
1−φ‖L‖ . Based on the following definition, we study

the minimum convergence rate of the proposed scheme.

Definition 1. Exponential Stability [26]: Given a conver-
gence rate ζ > 0, system (7) is said to be ζ-exponentially sta-
ble if there exists a positive scalar η such that r(t) satisfies
‖r(t)‖≤ η e−ζt‖r(0)‖, t ≥ 0 for any initial vector ‖r(0)‖.

Next, we compute the operating regions for T and φ
that collectively guarantee a minimum convergence rate ζ
for ‖r(nT )‖. Moreover, the worst-case error from x̄(0) is cal-
culated. The proposed approach requires λ2 and λN , which
can be estimated in a distributed manner based on [24,25].

Theorem 1. If the sampling period T and transmission
threshold φ satisfy T < Tmax and φ < φmax, where

Tmax = λ2 − ζ
λ2
N

, φmax =
c1 −

√
c2

2λNc3
, (10)

with c1 = 2λ2 +λN + 2ζTλN −2ζ, c2 = 8T 2ζλ3
N + 4T 2ζ2λ2

N +
4Tλ3

N + 4Tλ2λ
2
N + λ2

N , and c3 =λ2 + λN − ζ + 2TζλN ,
then, all agents are guaranteed to converge to the set defined
by {x(t) | ‖x(nT ) − x̄(0)1N‖≤M} with a least convergence
rate ζ, where M is the maximum quantization error given
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Fig. 2: Operational range for φ for guaranteed convergence.
‘×’ and ‘◦’, respectively, denote the poles and zeros of M .

below

M = 0.5
√
N(1− φ‖L‖)λN

c3φ2‖L‖2 − c1φ‖L‖+ (λ2 − ζ − Tλ2
N )
δ. (11)

Proof. To develop the ζ-exponential stability conditions for
system (7), we consider the following inequality

V̇ (t) + 2ζV (t) < 0, (12)
where V (t) = 0.5 rT(t) r(t) is a Lyapunov candidate [27].
If (12) is guaranteed, then 0.5‖r(t)‖2≤V (t)<V (0) e−2ζt ≤
0.5 e−2ζt‖r(0)‖2. Thus, ‖r(t)‖≤ e−ζt‖r(0)‖ is guaranteed if in-
equality (12) holds. We consider the time evolution of r(t) in
the interval nT ≤ t< (n+1)T which is generated from (7)
r(t) = −(t−nT )L

(
r(nT ) + e(nT ) + δ̃(nT )

)
+ r(nT ), (13)

From (13), we expand V̇ (t) in what follows
V̇ (t) = rT (t)ṙ(t) =−rT (nT )L

(
r(nT ) + e(nT ) + δ̃(nT )

)
+(t−nT )

(
r(nT )+e(nT )+δ̃(nT )

)T
LTL

(
r(nT )+e(nT )+δ̃(nT )

)
≤ Tλ2

N

(
‖r(nT )‖+ ‖e(nT )‖+ ‖δ̃(nT )‖

)2 − λ2‖r(nT )‖2

+ λN‖r(nT )‖‖e(nT )‖+ λN‖r(nT )‖‖δ̃(nT )‖. (14)

Using (8), (9), and ignoring negligible terms that include T 2,
δ2, Tδ, and their higher order terms, expression (14) is upper
bounded by the following terms
V̇ (t) ≤

(
Tλ2

N + 2αTλ2
N + α2Tλ2

N − λ2 + αλN
)
‖r(nT )‖2

+ 0.5
√
N (α+ 1)λNδ ‖r(nT )‖. (15)

Likewise, 2ζV (t) is expanded and upper-bounded as below
2ζV (t) = ζ rT(t) r(t) ≤ (2αζTλN + ζ) ‖r(nT )‖2. (16)

From (15) and (16), the following inequality holds for r(nT ) 6=0

V̇ (t) + 2ζV (t) ≤ 0.5
√
N (α+ 1)λNδ (17)

+
(
α2Tλ2

N+α(2Tλ2
N+λN+2ζTλN )+ζ+Tλ2

N−λ2
)
‖r(nT )‖.

Next, we replace α in (17). Inequality (12) is guaranteed
if the constraint ‖r(nT )‖<M is guaranteed, where M is
given in (11). It is obvious that M must be a positive scalar.
With respect to φ, M has one zero at φ= 1

‖L‖ and tow poles
at φ= c1±

√
c2

2c3‖L‖
. Since c2 > 0, both poles are real values. It can

be verified that if T < (λ2−ζ)λ−2
N , then c1 >

√
c2 and the poles

of M remain positive. Assuming T < (λ2−ζ)λ−2
N , in Fig. 2 we

show the sign of M with respect to different ranges of φ. Ac-
cording to Fig. 2, if 0≤φ< c1−

√
c2

2c3‖L‖
and T < (λ2−ζ)λ−2

N , then
M is guaranteed to remain positive for all t> 0. Since, the
upper-bound for φ, i.e., c1−

√
c2

2c3‖L‖
, depends on the global in-

formation ‖L‖, the largest eigenvalue (λN ) should be used
instead, and that completes the proof.

The Q-CEASE algorithm is summarized in Algorithm 1.
Remarks. The following features of Q-CEASE are worth
mentioning: (i) If T→Tmax, then φmax→0 andM→∞. On the
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other hand, for a given T , if φ→φmax, then M→∞. There-
fore, there is a trade-off between the selected values for T
and φ, and the maximum quantization error M . In general,
parameter M in the selected region shown in Fig. 2 is a mono-
tonically increasing function with respect to all parameters T ,
φ, ζ and δ. (ii) If T→0 and ζ→0, the proposed Q-CEASE
algorithm reduces to [9] where an asymptotic convergence
without sampling is studied. In this case, i.e., {T, ζ}→0, the
operating region for φ would be φ< λ2

λN (λ2+λN ) . (iii) The de-
sired consensus convergence rate must satisfy ζ <λ2. Other-
wise, T would be negative (see (10)). This is consistent with
the widely known fact that the consensus convergence rate
is higher than or equal to λ2, [20]. (iv) In contrast to [22],
where the obtained regions for T and φ depend on a global
transformation matrix, in this paper no global information is
required. Moreover, the convergence rate in [22] is unknown.
(v) For a finite combination of networks with fixed N , the
Q-CEASE algorithm can be operated based on a switching
network topologies. In this case, λ2 should be chosen less than
or equal to the minimum of the second smallest eigenvalues,
and λN greater than or equal to the maximum of maximum
eigenvalues. The design parameters need not to be recom-
puted for networks with switching topologies.

4. SIMULATION
In this section, we run Monte-Carlo experiments on random-
ized networks. Non-zero elements in the adjacency matrix
are set to 1. To explain Algorithm 1 in details, we randomly
select one network realization with N = 10. Non-zero edges in
the upper triangle of the adjacency matrix A are as follows:
{a1,2, a1,3, a1,4, a1,6, a1,7, a2,5, a2,8, a2,9, a2,10, a3,4, a3,8, a3,9,
a4,5, a4,9, a4,10, a5,6, a5,7, a5,9, a6,10, a7,8, a7,9, a7,10, a9,10}.
It can be verified that λ2 = 1.9908 and λ10 = 8.1941 for this
network. Let δ= 0.05 and ζ = 0.3. From (10), Tmax = 0.0252.
We select T ≈ 0.1Tmax = 0.003, which leads to φmax = 0.0179.
To keep M small enough, we select φ= 0.9φmax. For these
values, M = 4.3340. Starting from initial values xi(0) = i,
(1≤i≤10), we run the Q-CEASE algorithm until t? =nT ,
where t? = min

t=nT
{ t | | ‖r(t+T )‖−‖r(t)‖ | ≤ 0.0001}. The

evolution of the states xi(t) for the ten nodes is shown
in Fig. 3(a). For this setting, t? = 1.711 sec, which is equiv-

Table 1: Q-CEASE performance for differnet {T, φ, δ}.
T/Tmax φ/φmax δ M t? ‖r(t?)‖ AE

0.1 0.5 0.05 0.93 2.01 0.1145 202.91
0.5 0.5 0.05 1.34 1.99 0.1521 238.78
0.9 0.5 0.05 1.95 2.00 0.1649 164.76
0.5 0.1 0.05 1.15 1.94 0.1205 204.25
0.5 0.5 0.05 2.04 1.95 0.1354 206.84
0.5 0.9 0.05 9.40 2.03 0.1414 196.15
0.5 0.5 0.01 0.41 1.98 0.0845 212.01
0.5 0.5 0.10 3.95 1.83 0.1754 197.93
0.5 0.5 0.40 21.41 1.63 0.4492 219.63

alent to a total number of 1.711/0.003≈ 570 samples. How-
ever, the ten nodes, respectively, trigger 108, 103, 96, 100,
97, 94, 95, 108, 95, and 110, events, leading to an aver-
age event (AE) of 100.60 per node. The ratio of the av-
erage events to total samples for this setting is, therefore,
100.6/570 = 0.1765. The norm of r(t?) which shows how close
the nodes have reached x̄(0) is calculated as ‖r(t?)‖= 0.1015.
As expected, ‖r(t?)‖≤M . In Fig. 3(b), we compare the guar-
anteed rate e−0.3t‖r(0)‖ with the actual rate ‖r(t)‖, which
satisfies ‖r(t)‖ ≤ e−0.3t‖r(0)‖ for all t > 0.

Next, we investigate the scalability of the Q-CEASE algo-
rithm for random networks with N = 10 and varying parame-
ters T , φ, and δ. Networks are generated with E{λ2}= 2 and
E{λ10}= 8, where E returns the expected value. For given
values of T/Tmax, φ/φmax, and δ in each row of Table 1, we
run the Q-CEASE algorithm with ζ = 0.3 over 25 random net-
works. The results for M , t?, ‖r(t?)‖, and AE are calculated
based on the average values for all 25 networks. According
to Table 1, we conclude that: (i) For fixed φ/φmax and δ,
increasing T/Tmax results in smaller values for AE at the ex-
pense of a higher quantization error (larger ‖r(t?)‖); (ii) For
fixed T/Tmax and δ, increasing φ/φmax decreases the AE,
however quantization error is slightly increased; (iii) As ex-
pected, increasing δ results in higher values for ‖r(t?)‖ which
is translated to a higher error in average consensus.

In this section, we consider larger random networks
with N = 50, E{λ2}= 9, and E{λ50}= 27. Let ζ = 0.3. In
Fig. 3(c), we show ‖r(t?)‖ and M with respect to δ for
fixed T/Tmax =φ/φmax = 0.5. According to Fig. 3(c), the
actual quantization error ‖r(t?)‖ is much lower than the
worst-case error (M), especially for larger δ. In Fig. 3(d), the
3D graph for AE is shown with respect to different ratios
of T/Tmax and φ/φmax, (δ= 0.05). Based on Fig. 3(d), the
least amount for AE happens when both φ and T are cho-
sen close to their maximum allowable values from (10), i.e.,
φ→φmax and T→Tmax, which is at the expense of a higher
quantization error. These observations quantify that the Q-
CEASE implementation provides an efficient framework for
quantized average consensus with transmission savings.

5. CONCLUSION
This paper proposes a sampled-data event-triggered average
consensus algorithm for quantized information exchange with
a guaranteed rate of convergence. The Lyapunov stability
theorem is used to compute design parameters, namely, the
sampling period and transmission threshold in a distributed
manner. The relations between eigenvalues of the Laplacian
matrix, sampling period, transmission threshold, maximum
quantization error, and desired convergence rate are derived
analytically. The effectiveness of the proposed Q-CEASE is
validated using Monte-Carlo experiments. In future, we ex-
tend Q-CEASE to networks under denial of service attacks.
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