
FAST EDGE-CONSENSUS COMPUTING BASED ON
BREGMAN MONOTONE OPERATOR SPLITTING

Kenta Niwa,1 Guoqiang Zhang2 and W. Bastiaan Kleijn3

1NTT Media Intelligence Laboratories, Japan
2University of Technology Sydney, Australia

3Victoria University of Wellington, New Zealand

ABSTRACT
Edge-consensus computing is a framework to optimize a global cost
function when distributed nodes observe distinct data sets. The dis-
tributed primal-dual method of multipliers (PDMM) and distributed
alternating direction method of multipliers (ADMM) find network-
global optima for edge-consensus algorithms by exchanging vari-
ables rather than data sets among the nodes. Since the distributed
PDMM follows traditional Peaceman-Rachford splitting, it has a
faster convergence rate than the distributed ADMM. To further speed
up the convergence rate, we propose a new edge-consensus comput-
ing algorithm based on Bregman Peaceman-Rachford splitting. In
traditional Peaceman-Rachford splitting, the variable update is de-
fined based on a Euclidean metric and the convergence rate and is
a form of first-order gradient descent. By generalizing the metric to
a Bregman divergence and designing the divergence adaptively, our
fast edge-consensus computing algorithm corresponds to the Newton
or an accelerated gradient descent method. The results of our experi-
ments confirm that the proposed algorithm can significantly improve
the convergence rate of edge-consensus computing over state-of-the-
art algorithms.

Index Terms— Distributed computing, convex optimization,
monotone operator splitting (MOS), Bregman divergence

1. INTRODUCTION
Optimization algorithms are commonly used in a wide range of prac-
tical applications such as image classification, speech/audio signal
processing, and natural language processing. In many cases, the op-
timization procedure uses data that are made available to one or more
centralized (co-located) processing units. However, it is not always
possible to make the data sets available to centralized processing
units when the scale of the data set is very large or the processing
units (network nodes) are dispersed over wide areas. In the near
future, we predict that big data (e.g. speech/image/language) will
be collected in spatially distributed nodes in a network. Therefore,
it is natural to carry out optimization to obtain the desired results
by exchanging variables among the nodes rather than the data sets
themselves. This approach is a form of edge-consensus computing.
The goal of this study was to construct a practical and fast edge-
consensus computing algorithm for adapting a large amount of data
accumulated one after another.

Significant advances have recently been made in running opti-
mization algorithms over multiple processors. Example approaches
include the hogwild! [1], elastic averaging stochastic gradient de-
scent (SGD) [2], and communication-efficient coordinate ascent
(COCOA) [3]. Monotone operator splitting (MOS)-based opti-
mization methods [4, 5] are particularly attractive for distributed
processing systems. MOS naturally facilitates parallel computa-
tion. Many parallel algorithms based on MOS are variants of the

alternating direction method of multiplier (ADMM) [6, 7]. Since
most distributed ADMM studies require a central node [8, 9], the
paradigm must be modified to be suitable for edge-consensus com-
puting [10, 11]. Although distributed ADMM studies [10, 11] are
effective, their convergence rate is often relatively slow because it is
equivalent to applying Douglas-Rachford splitting [12] to the con-
strained minimization problem [7, 13]. The distributed primal-dual
method of multiplier (PDMM) [14, 15] results in faster convergence
because it is based on Peaceman-Rachford splitting [16].

The contribution of this paper is a new variant of an edge-
consensus computing algorithm that is faster than state-of-the-art
distributed PDMM. In studies of Bregman ADMM [17] and, more
recently, Bregman monotone operator splitting (B-MOS) [18], it
was shown that a Euclidean metric is used in traditional MOS algo-
rithms. This implies that the distributed PDMM follows a first-order
gradient descent (GD) method [19]. We were able to significantly
improve the convergence rate by following paradigms that resem-
ble the Newton method or an accelerated gradient descent (AGD)
method, e.g., [20]. That is, by generalizing the Euclidean metric to
the Bregman divergence [21] and varying this divergence adaptively,
we obtain a fast edge-consensus algorithm that is based on B-MOS.

This paper is organized as follows. We explain conventional
algorithms in Sec. 2. We describe the proposed fast edge-consensus
algorithm based on Bregman Peaceman-Rachford splitting in Sec.
3. After a discussion of the numerical experiments in Sec. 4, we
conclude the paper in Sec. 5.

2. CONVENTIONAL ALGORITHMS

We define the problem to be solved in Sec. 2.1. We briefly discuss
conventional algorithms to the problem introduced in Sec. 2.2.

2.1. Cost Formulation

Let us consider a computation network in which different data sets
are collected in each set of V (≥2) distributed nodes (e.g. compu-
tation servers), as shown in Fig. 1. The edge structure is described
with a graph G(V, E), where V is the set of V nodes and E denotes
the set of undirected edges. Any convex closed proper (CCP) cost
form, e.g., [22], such as the cross-entropy for multi-class classifica-
tion problems or mean squared error (MSE) for regression problems,
may be used. Even if the cost forms are common among V nodes,
they would differ from each other because the data sets available for
each node are different. The resulting CCP form at the i-th node is
denoted as Fi : R

m →R∪{∞} and the variable realization at node
i is wi ∈ R

m. The edge-consensus computing problem seeks the
wi that minimizes the sum of local-node costs while constraining
variable wi to be identical among nodes.

The optimization problem is of the general form and given by

4609978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Fig. 1. Example of distributed computing system. V nodes are allowed to
be connected according to arbitrary graph structure G(V , E), where there is
no central server in them.

inf
wi

∑
i∈V

Fi(wi) s.t.Ai|jwi+Aj|iwj=0 (∀i∈V,∀j ∈N (i)),(1)

where Ai|j ∈ R
m×m are parameters describing the constraints be-

tween the variables and N (i) = {j ∈ V|(i, j) ∈ E} is the set of
neighbors connected with the i-th node. As we optimize variables
to reduce the sum of local-node cost while striving to make the vari-
ables identical among the nodes, Ai|j and Aj|i are identity matrices
with opposite signs:

Ai|j =
{

I (i > j, j ∈ N (i))
−I (j > i, j ∈ N (i))

. (2)

Since it is usual to solve the dual problem for the constrained
minimization as in (1), the associated Lagrangian is introduced:

L =
∑
i∈V

(
Fi(wi)−

∑
j∈N (i)

〈
νi,j ,Ai|jwi

〉)
, (3)

where νi,j ∈R
m denotes the dual variables w.r.t. a constraint along

undirected edge (i, j). Thus, the dual problem form is given by

sup
νi,j

inf
wi

L = − inf
νi,j

∑
i∈V

F �
i

( ∑
j∈N (i)

AT
i|jνi,j

)
, (4)

where F �
i is the convex conjugate of Fi [24]:

F �
i

( ∑
j∈N (i)

AT
i|jνi,j

)
=sup

wi

( ∑
j∈N (i)

〈
νi,j ,Ai|jwi

〉−Fi(wi)

)
, (5)

and T denotes transposition.
To facilitate distributed computation in which each node variable

wi is updated autonomously/asynchronously, a lifting formalism is
used e.g., [14, 15]. Thus, we split νi,j into bidirectional dual vari-
ables {λi|j ,λj|i} ∈R

m. This enables variable λi|j to be transmitted
from i to j autonomously/asynchronously for each node. However,
since each pair of bidirectionalized {λi|j ,λj|i} originates from νi,j ,
it must be constrained to be identical. As a result, the problem (4) is
now reformulated by

inf
λi|j

∑
i∈V

F �
i

( ∑
j∈N (i)

AT
i|jλi|j

)
s.t. λi|j=λj|i, ∀i∈V,∀j∈N (i). (6)

For further simplified notation, variables for each node/edge
and related parameters are stacked in a vector/matrix form as w=[
wT

1, . . . ,w
T
V

]T
, λ =

[
λT

1|2, . . . ,λ
T
1|V , . . . ,λT

V |1, . . . ,λ
T
V |V −1

]T
,

and A∈R
mV (V −1)×mV . Therefore, we can now rewrite (6) as

inf
λ

F �(ATλ) s.t. λi|j = λj|i, ∀i∈V,∀j∈N (i), (7)

where F � is the convex conjugate of the sum over local-node cost
functions F (w) =

∑
i∈V Fi(wi),

F �(ATλ) = sup
w

(〈λ,Aw〉 − F (w)) . (8)

Problem (7) can now be rewritten as
inf
λ

F �(ATλ) + δ(I−P)(λ), (9)

where the indicator function δ(I−P) is used to make λi|j and λj|i
identical:

δ(I−P)(λ) =

{
0 (I −P)λ = 0
+∞ (otherwise)

, (10)

where P is the permutation matrix that exchanges dual variables be-
tween connected nodes as λj|i↔λi|j .

It was shown in this subsection that the edge-consensus comput-
ing problem (1) is reformulated as a sum of two CCP functions (9).
In the next subsection, we describe conventional algorithms for (9).

2.2. Conventional Algorithms Based on MOS

We now briefly explain several conventional algorithms of (9). The
fixed point of (9) is found when its subgradient includes zero:

0 ∈ T1(λ) + T2(λ), (11)

where T1(λ)=A∂F �(ATλ) and T2(λ)= ∂δ(I−P)(λ) denote the
subdifferential of each CCP function in (9), ∂ denotes the subdif-
ferential operator, and ∈ reflects that its output can be multi-valued
when F � includes discontinuous points, e.g., [4]. For the problem
form in (11), MOS is effective in finding its fixed point.

In the distributed PDMM [14], [15], Peaceman-Rachford split-
ting [16], which is a MOS, is applied to (11). Although the detailed
algorithmic form is not described here, it can reach the fixed point
by iteratively updating variables {wi,λi|j} in the i-th node and ex-
changing a dual variable between connected nodes. Since each pro-
cedure is separate for each node, the variables can be updated au-
tonomously/asynchronously.

Meanwhile, distributed ADMM based algorithms (e.g., [8, 9])
follow Douglas-Rachford splitting [12], which is another MOS. Al-
though it has been assumed that a central server exists, our aim was
to find optima by using a distributed computing system. For such
a situation, it has been shown [15] that the cost form is modified,
eventually resulting in (9), then Douglas-Rachford splitting is ap-
plied to (11). Since Douglas-Rachford splitting includes an averaged
operator, e.g., [4], the convergence rate with the distributed ADMM
(Douglas-Rachford splitting) is generally slower than the distributed
PDMM (Peaceman-Rachford splitting).

In this subsection, we discussed the use of two MOS-based algo-
rithms, distributed PDMM and ADMM. In constructing a solver, the
convergence rate is an important factor. Although it is expected that
the distributed PDMM would be faster than the distributed ADMM,
we found possibilities to speed up the convergence rate of distributed
PDMM. As shown in a study of Bregman ADMM [17] and our re-
cent work on B-MOS [18], conventional B-MOS algorithms follow
a first-order GD. By appropriately selecting the Bregman divergence
metric, we will achieve a new MOS formulation that facilitates meth-
ods that resemble the Newton or an AGD method. The resulting
B-MOS is discussed in Sec. 3 regarding the construction of our pro-
posed edge-consensus computing algorithm.

3. PROPOSED ALGORITHM
After providing a brief summary of B-MOS in Sec. 3.1, we intro-
duce our proposed algorithm that applies B-MOS to the problem
formulated from (11).

3.1. Overview of B-MOS

For fast edge-consensus computing, we use B-MOS [18], which
is a generalization of traditional Peaceman-Rachford and Douglas-
Rachford splitting [16]. In traditional MOS algorithms, such as
Peaceman-Rachford splitting and Douglas-Rachford splitting, a Eu-
clidean metric is implicitly used in the update procedure. B-MOS

4610



generalizes this Euclidean metric to Bregman divergence [21], which
includes additional degrees of freedom, providing tuning variable
space for fast convergence. An appropriate design will lead to a sig-
nificantly faster convergence than conventional MOS algorithms.

We first define the Bregman divergence of λ and another point
z as

BD(λ ‖ z) =D(λ)−D(z)−〈∇D(z),λ−z〉 , (12)

where D is restricted to be a differentiable strictly convex function
while its gradient satisfies ∇D(0)= 0. This is because applying the
inverse operator of ∇D, which is denoted as (∇D)−1, to both sides
of (11) will not affect the fixed point condition:

0 ∈ (∇D)−1◦T1(λ)+(∇D)−1◦T2(λ), (if ∇D(0)=0), (13)

where ◦ synthesizes two different operators. Since D modifies the
variable space metric, its appropriate design is important for fast
convergence rate. When we select D(λ) = 1

2ρ
‖λ‖22 (ρ > 0), the

Bregman divergence reduces to the Euclidean distance.
As shown in [18], reformulation of (11) introduces general-

ized Bregman Peaceman-Rachford (B-P-R) and Bregman Douglas-
Rachford (B-D-R) splitting. An auxiliary dual variable z is as-
sumed to be associated with λ by using the D-resolvent operator
Ri = (I +(∇D)−1 ◦Ti)

−1 [25] as λ ∈R1(z). By reformulating
(11), recursive variable update rules are obtained as

z ∈ C2 ◦C1(z) (B-P-R splitting), (14)

z ∈ αC2 ◦C1(z) + (1−α)z (B-D-R splitting), (15)

where Ci=(I + (∇D)−1 ◦Ti)
−1 ◦(I − (∇D)−1 ◦Ti) = 2Ri − I

is the D-Cayley operator [18] and α∈ (0, 1) is an averaging coeffi-
cient. The variable update rules (14) and (15) are decomposed into a
simpler procedures as

zt+1/2=C1(z
t), (16)

zt+1=

{
C2(z

t+1/2) (B-P-R splitting)
αC2(z

t+1/2) + (1−α)zt (B-D-R splitting)
. (17)

Note that (14) and (15) coincide with the traditional (Euclidean)
Peaceman-Rachford and Douglas-Rachford splitting, respectively
when we select the Euclidean metric D(λ)= 1

2ρ
‖λ‖22.

We now discuss the relationship between the convergence ratio
through the D-Cayley operator and Bregman divergence design (D
design). The property of Ti is assumed to be given by

γLB,i‖ź−z‖2 ≤ ‖Ti(ź)−Ti(z)‖2 ≤ γUB,i‖ź−z‖2, (18)

for any two different points {z, ź}, and where 0≤γLB,i≤γUB,i<∞.
Applying (∇D)−1 to Ti modifies the property of Ti as

σLB,i‖ź−z‖2≤‖(∇D)−1◦Ti(ź)−(∇D)−1◦Ti(z)‖2≤σUB,i‖ź−z‖2,
(19)

where 0 ≤ σLB,i ≤ σUB,i < ∞. As the theorem proof is noted in
[18], the convergence ratio bound through the D-Cayley operator is
deterministically given by

‖Ci(z
t)−Ci(z

t−1)‖2≤
√

1− 4σLB,i

(1 + σUB,i)2
‖zt−zt−1‖2 . (20)

The minimum contraction by optimizing σLB,i given σUB,i is σLB,i =
min

(
σUB,i,

1
4
(1 + σUB,i)

2
)
, and the contraction ratio is 0 only if

σLB,i= 1, σLB,i=1. (21)

Thus, D should be designed so that {σLB,i, σUB,i} approach 1. For
σLB,i �=1, the best choice is σLB,i=σUB,i, then the contraction ratio,

denoted as ηi, satisfies 0<
√

1− 4σLB,i

(1+σUB,i)
2 ≤ηi≤1. This fact shows

that the Ci is a non-expansive operator. If we can select D such that
it approaches the condition (21) rather than the Euclidean metric,
fast convergence rate can be obtained.

Algorithm 1 Proposed algorithm

Initialization of w0
i , z̃0i|j

for t = 0, . . . , T−1 do
	 Primal-dual update in local node
for all i ∈ V, j ∈ N (i) do

wt+1
i =argminwi

(
Fi(wi) +

∑
j∈N (i)BD

†
i|j

(
Ai|jwi‖z̃ti|j

))
z̃
t+1/2

i|j = z̃ti|j−2Ai|jw
t+1
i

	 Transmit/receive variable
for all i ∈ V, j ∈ N (i) do

Transmitj→i

(
z̃
t+1/2

j|i
)

z̃t+1
i|j =

{
z̃
t+1/2
j|i (B-P-R splitting)

αz̃
t+1/2
j|i + (1−α)z̃ti|j (B-D-R splitting)

end for

3.2. Edge-consensus Computing Algorithm Based on B-MOS

First, the update rule for our edge-consensus computing algorithm is
provided. For the subdifferential of convex conjugate function T1,
it is common that the primal w and dual variables z are alternately
updated, e.g. [4]. For a nonlinearly transformed auxiliary variable
z̃=∇D(z), the primal-dual update rule for (16) is given by

wt+1= argmin
w

(
F (w) +BD†

(
Aw‖z̃t)), (22)

z̃t+1/2 = z̃t − 2Awt+1, (23)

where the Bregman divergence penalty term in (22) is used to gen-
eralize a variable space metric and it includes a strictly convex func-
tion D† that satisfies ∇D† = (∇D)−1. For the subdifferential of
the indicator function T2, the related D-Cayley operator becomes
C2=(∇D)−1P(∇D) (Sherson et al. described its basic derivation
[15]), but the variable space is generalized by Bregman divergence
instead of the Euclidean metric. The variable update rule for (17),
where its input is z̃, is given by using the permutation matrix in (10):

z̃t+1 =

{
Pz̃t+1/2 (B-P-R splitting)
αPz̃t+1/2+(1−α)z̃t (B-D-R splitting)

. (24)

This indicates that the dual auxiliary variables z̃i|j are exchanged
between connected nodes. The resulting algorithm in a distributed
node calculation manner is summarized in Algorithm 1.

Next, we explain a D and D† design method for fast con-
vergence. As a method of approximately satisfying (21), we use
quadratic forms that satisfies ∇D†=(∇D)−1 and ∇D(0)=0 as

D(λ) =
1

2
〈MF�(z)λ,λ〉 , (25)

D†(λ) =
1

2

〈
M−1

F�(z)λ,λ
〉
. (26)

For a Hessian design, Newton, AGD and GD methods can be uti-
lized:

M−1
F�(z) =

⎧⎪⎨
⎪⎩
HF (z) (Newton)
LF (z) (AGD)
1
ρ
I (GD)

, (27)

where HF (z) uses a second-order gradient of the cost F , and
LF (z) is a diagonal matrix whose elements are scaled identical
with HF (z). Compared with GD, the variable space metric will be
modified by using the Newton or AGD method such that approaches
(21).

4611



Fig. 2. Graph models G(V , E)
Table 1. Parameters

Number of graph structures 2 (V = 3, 10)
Number of classes to be discriminated, K 10
Dimension of input data, m 7,850 = ( 28×28 + 1)K

Averaging coefficient, α 0.5
Step size, ρ 1e−4

Regularization coefficient, μ 0.01

For fast convergence in the proposed algorithm, it may be bet-
ter to choose (i) B-P-R splitting rather than B-D-R splitting because
the averaged operator (e.g. [4]) will slow the convergence rate and
(ii) design D such that follows Newton or AGD rather than GD (Eu-
clidean metric) because it will modify the metric to approach condi-
tion (21). When we select the Euclidean metric in D, Algorithm 1
is reduced to a conventional distributed PDMM and ADMM.

4. EXPERIMENTS

We evaluated the effectiveness of the proposed edge-consensus com-
puting algorithm through numerical experiments.

4.1. Experimental Conditions

To show the efficacy of the proposed algorithm, we solved dis-
tributed multi-class classification problems that were based on
the MNIST data set [27]. The data set is composed of images
of K = 10 class handwritten digits (Utr = 60, 000 training and
Uev = 10, 000 evaluation data). We prepared graph structures with
V = 3 and V = 10. The graphs are shown in Fig. 2. The graph
with V =10 was designed such that both long and short paths were
present. The amount of data placed on the i-th node is denoted as
U(i) with

∑V
i=1 U(i)=Utr. The training data set at the i-th node

{φi,1, . . . ,φi,U(i)} was randomly selected. A one-hot-function
si,k,u ∈{0, 1} indicates whether an image belongs to class k. The
experimental parameters are summarized in Table 1.

For this problem, the cross-entropy with a L1 regularization was
used as a cost: F (w)=

∑V
i=1 Fi(wi), where

Fi(wi)=

U(i)∑
u=1

K∑
k=1

−si,k,u
U(i)

log di,k,u(wi,k) + μ‖wi,k‖1, (28)

where wi = [wT
i,1, . . . ,w

T
i,K ]T, and di,k,u(wi,k) is the soft-max

function for ai,k,u(wi,k)=〈wi,k,φi,u〉 as:

di,k,u(wi,k) =
exp(ai,k,u(wi,k))∑K
j=1 exp(ai,j,u(wi,j))

. (29)

The w-update procedure in Algorithm 1 was implemented as an
iterative fashion because it was difficult to represent as a closed vari-
able update form.

Six algorithms were compared: conventional (i) distributed
ADMM (D-ADMM), (ii) distributed PDMM (D-PDMM), the pro-
posed (iii) B-P-R with AGD method, (iv) B-P-R with Newton
method (v) B-D-R with AGD method, (vi) B-D-R with Newton
method, as summarized in Algorithm 1. The variables, e.g., wi,

100 101 102 103

Iteration number [Times]

0.2

0.4

0.6

0.8

1
1.2
1.4
1.6
1.8

2

C
os

t

100 101 102 103

Iteration number [Times]

0.2

0.4

0.6

0.8

1
1.2
1.4
1.6
1.8

2

C
os

t

10 100 500
Procedure time [Sec]

0.2

0.4

0.6

0.8

1
1.2
1.4
1.6
1.8

2

C
os

t

10 100 500
Procedure time [Sec]

0.2

0.4

0.6

0.8

1
1.2
1.4
1.6
1.8

2

C
os

t

(a) V=3

(b) V =10

Fig. 3. Convergence curves when variables were exchanged randomly
among V nodes at rate of once per three iterations

were randomly initialized using a normal distribution Norm(0, 0.1).
To investigate the robustness against the asynchronous variable ex-
change among nodes, the exchange frequency rate was controlled to
be once per three iterations. Although this exchange frequency rate
slows the convergence rate compared to the synchronous variable
exchange case, the differences in the convergence curves did not
change significantly. Thus, we present the experimental results for
only the asynchronous case.

4.2. Experimental Results

We evaluated the six algorithms with the cost convergence curves.
To do this, T=1, 000 iterations were computed on a GPU (NVIDIA
GeForce GTX 1080 Ti) and both the cost value F (wt)=

∑
i∈VFi(w

t
i)

and procedure time were recorded. Note that our goal was to study
the convergence rate. The ultimate accuracy provided by the algo-
rithms used for our experiment is limited by the simple formulation
(29). Thus, the final digit-recognition accuracy is low compared to
the state-of-the-art, but this was irrelevant to our study.

Figure 3 shows the relationships between the six algorithms and
the cost value F (wt). The results are shown separately for itera-
tion number and procedure time for each graph. From the conver-
gence curves, B-P-R with Newton had the fastest convergence rate
and B-D-R with Newton was the second best. Although the com-
putational cost of B-P-R/B-D-R with Newton was the heaviest per
iteration, they were significantly faster than the conventional algo-
rithms. Although only dual variables were exchanged between con-
nected nodes, the differences in variable wi between nodes were
very small.

5. CONCLUSION

We proposed a fast edge-consensus computing algorithm based on
B-MOS. We replaced the Euclidean variable space metric used in
conventional algorithms with the Bregman divergence and it that was
appropriately designed to follow the Newton or AGD method. The
proposed algorithm finds the global fixed point by exchanging the
dual variables between nodes in an arbitrary edge structure. Our
experimental results show that the convergence rate is improved sig-
nificantly under various conditions.

4612



6. REFERENCES

[1] B. Recht, C. Re, S. Wright and F. Niu, Hogwild: a lock-free
approach to parallelizing stochastic gradient descent, Advances
in Neural Information Processing Systems, 693–701, 2011.

[2] S. Zhang, A. E. Choromanska and Y. LeCun, Deep learning
with elastic averaging SGD, Advances in Neural Information
Processing Systems, 685–693, 2015.

[3] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hof-
mann and M. I. Jordan, Communication-efficient distributed
dual coordinate ascent, Advances in Neural Information Pro-
cessing Systems, 3068–3076, 2014.

[4] E. K. Ryu and S. Boyd, Primer on monotone operator methods,
Applied and Computational Mathematics, 15(1), 3–43, 2016.

[5] H. H. Bauschke and P. L. Combettes, Convex analysis and
monotone operator theory in Hilbert spaces, Springer, 2017.

[6] D. Gabay and B. Mercier, A dual algorithm for the solution
of nonlinear variational problems via finite element approxi-
mation, Computers & Mathematics with Applications, 2(1),
17–40, 1976.

[7] S. Boyd and N. Parikh and E. Chu and B. Peleato and J. Eck-
stein, Distributed optimization and statistical learning via the
alternating direction method of multipliers, Advances in Neu-
ral Information Processing Systems, 3, 1–122, 2011.

[8] E. Wei and A. Ozdaglar, Distributed alternating direction
method of multipliers, Institute of Electrical and Electronics
Engineers (IEEE), 2012.

[9] R. Zhang and J. Kwok, Asynchronous distributed ADMM for
consensus optimization, Proc. of 31st international conference
on machine learning (ICML’14), 1701–1709, 2014.

[10] Q. Ling and A. Ribeiro, Decentralized linearized alternat-
ing direction method of multiplier, Proc. of IEEE interna-
tional conference on acoustics, speech and signal processing
(ICASSP’14), 5447–5451, 2014.

[11] A. Mokhtari and W. Shi and Q. Ling and A. Ribeiro, Decentral-
ized quadratically approximated alternating direction method
of multipliers, Proc. of IEEE global conference on signal and
information processing (GlobalSIP’15), 795–799, 2015.

[12] J. Douglas and H. H. Rachford, On the numerical solution
of heat conduction problems in two and three space variables,
Transactions of the American Mathematical Society, 82(2),
421–439, 1956.

[13] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford
splitting method and the proximal point algorithm for maximal
monotone operators, Mathematical Programming, Springer,
55, 293–318, 1992.

[14] G. Zhang and R. Heusdens, Distributed optimization using
the primal-dual method of multipliers, IEEE Transactions on
Signal and Information Processing over Networks, 4(1), 173–
187, 2017.

[15] T. Sherson, R. Heusdens and W. B. Kleijn, Derivation and anal-
ysis of the primal-dual method of multipliers based on mono-
tone operator theory, arXiv preprint arXiv:1706.02654, 2017.

[16] D. W. Peaceman and H. H. Rachford, The numerical solution
of parabolic and elliptic differential equations, Journal of the
SIAM, 3(1), 28–41, 1955.

[17] H. Wang and A. Banerjee, Bregman alternating direction
method of multipliers, Advances in Neural Information Pro-
cessing Systems, 2816–2824, 2014.

[18] K. Niwa and W. B. Kleijn, Bregman monotone operator split-
ting, arXiv preprint arXiv:1807.04871, 2018.

[19] A. Cauchy, Méthode générale pour la résolution des systemes
d’équations simultanées, Comptes Rendus de l’Academie des
Sciences, 25, 536–538, 1847.

[20] R. Johnson and T. Zhang, Accelerating stochastic gradient de-
scent using predictive variance reduction, Advances in Neural
Information Processing Systems, 315–323, 2013.

[21] L. M. Bregman, The relaxation method of finding the com-
mon point of convex sets and its application to the solution
of problems in convex programming, USSR Computational
Mathematics and Mathematical Physics, 7(3), 200–217, 1967.

[22] R. T. Rockafellar, Convex analysis. Princeton university press,
1970.

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge University Press, 2004.

[24] W. Fenchel, On conjugate convex functions, Canad. J. Math,
1, 73–77, 1949.

[25] H. H. Bauschke, M. Jonathan and P. L. Combettes, Bregman
monotone optimization algorithms, SIAM Journal on control
and optimization, 42(2), 596–636, 2003.

[26] K. Lange, D. R. Hunter and I. Yang, Optimization transfer
using surrogate objective functions. Journal of computational
and graphical statistics, Taylor & Francis, 9(1), 1–20, 2000.

[27] Y. LeCun, C. Cortes and C. J. Burges, MNIST
handwritten digit database, AT&T Labs. Available:
http://yann.lecun.com/exdb/mnist, 2010.

4613


		2019-03-18T11:19:04-0500
	Preflight Ticket Signature




