
DISTRIBUTED CONVEX OPTIMIZATION WITH LIMITED COMMUNICATIONS

Milind Rao† Stefano Rini? Andrea Goldsmith†

† Electrical Engineering, Stanford University, Stanford, CA
? National Chiao Tung University, Hsinchu, Taiwan

{milind,andreag}@stanford.edu, stefano@nctu.edu.tw

ABSTRACT

In this paper, a distributed convex optimization algorithm,
termed distributed coordinate dual averaging (DCDA) algo-
rithm, is proposed. The DCDA algorithm addresses the sce-
nario of a large distributed optimization problem with limited
communication among nodes in the network. Currently known
distributed subgradient descent methods, such as the distributed
dual averaging or the distributed alternating direction method
of multipliers, assume that nodes can exchange messages of
large cardinality. Such an assumption on the network commu-
nication capabilities is not valid in many scenarios of practical
relevance. To address this setting, we propose the DCDA algo-
rithm as a distributed convex optimization algorithm in which
the communication between nodes in each round is restricted
to a fixed number of dimensions. We bound the rate of conver-
gence under different communication protocols and network
architectures for this algorithm. We also consider the exten-
sions to the cases of imperfect gradient knowledge and when
transmitted messages are corrupted by additive noise or are
quantized. Numerical simulations demonstrating the perfor-
mance of DCDA in these different settings are also provided.

Index Terms— Distributed optimization, subgradient de-
scent methods, convex analysis, wireless communications

1. INTRODUCTION
With the emergence in recent years of big data paradigms,
decentralized optimization algorithms have received consid-
erables interest in the literature. A distributed optimization
problem of particular relevance is the one in which the global
objective function is obtained as the sum of convex functions,
each known at one of the nodes in the network. Originally
considered by Tsitsiklis et. al. [1], this problem is broadly
referred to as the consensus problem. A number of distributed
subgradient descent methods have been proposed to solve the
consensus problem such as distributed subgradient descent
(DSG) [2, 3], distributed dual averaging (DDA) [4], acceler-
ated Nesterov gradient descent [5] and distributed alternating
direction method of multipliers (DADMM) [6, 7]. A DSG al-
gorithm for the consensus problem is initially proposed in [2],
building upon consensus algorithms for computing the exact
averages of initial values at the agents [8], where each node
updates its estimate using a linear combination of the estimates
of its neighbors and the gradient of its local function. In the
literature, a number of variations of this algorithm have been
considered, such as continuous time extensions [9], networks
with link failures [3], and quantized communication [10]. Liu
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et al [11] analyze an asynchronous distributed coordinate de-
scent version where one coordinate of the optimal solution is
communicated at each time instant. Inspired by Nesterov’s
dual averaging algorithm [12], Duchi et. al. [4] propose the
DDA algorithm where each node maintains an estimate for a
dual variable by averaging the estimates of its neighbors and
adding the gradient. A proximal projection of the dual variable
produces an optimization variable. The dual variable is up-
dated similarly to the DSG algorithm, while the dual projection
allows nonlinear constraints on the solution to incorporated. In
[4], the authors also study the performance of the DDA algo-
rithm in the presence of time varying networks, communication
of gossip protocols, and stochastic gradients. The analysis of
the DDA algorithm with delays in the communication network
is performed in [13, 14]. The authors of [15] study the com-
putation/communication trade-off for the DDA algorithm by
considering the case in which communication is subject to a
total cost constraint. Another popular class of algorithms to
solve distributed constrained convex optimization problems are
the DADMM algorithms proposed in [6], building upon the
ADMM algorithm of [16]. The analysis of convergence for this
algorithm is performed in [17], while the case of asynchronous
communications is studied in [7]. In the above algorithms, the
messages exchanged between nodes at each time instant is on
the order of the dimension d of the optimization variable.

In this work, we introduce a decentralized optimization al-
gorithm in which the dimension of the messages exchanged be-
tween nodes is restricted to dimension m ≤ d and yet guaran-
tees convergence to the optimal value at all nodes. This algo-
rithm is inspired by the DDA algorithm of [4] and is thus termed
the distributed coordinate dual averaging (DCDA) algorithm.
In the following, we derive the convergence of the DCDA algo-
rithm for different communication protocols and network archi-
tectures. Additionally, we study the behavior of the algorithm
in the scenario of a stochastic gradient, with noisy and quan-
tized communication. We show an inverse relationship between
number of iterations t, message dimension m such that t dou-
bles when m is halved to achieve an optimality gap of ε.
Proofs are omitted for brevity: complete proofs are provided
in an extended version of the manuscript available online [18].

2. PROBLEM FORMULATION

We study the distributed convex optimization problem in which
the minimum of a function is to be computed when its factors
are distributed across a network subject to communication con-
straints. More precisely, consider the n-nodes undirected graph
G = (V,E), V = [1 : n], and E ⊂ V ×V in which each node
Vi is associated the function fi : Rd → R. We aim to minimize
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function f(x) obtained as

f(x) =

n∑
i=1

fi(x), (1)

for x ∈ X with X closed and convex. We assume that each
fi(x) is convex and L-Lipschitz with respect to a norm ‖ · ‖,
i.e. |fi(x) − fi(y)| ≤ L‖x − y‖, x, y ∈ X . The Lipschitz
condition implies that for any x ∈ X and any subgradient gi ∈
∂fi(x), we have ‖gi‖∗ ≤ L, where ‖ · ‖∗ is the dual norm
of ‖ · ‖. At each time instant t ∈ N, the node Vi maintains
an estimate xi(t) of the value x∗ which attains the minimum of
the function f(x) in (1). The node Vi is able to communicate to
the node Vj at the time instant t if the two nodes are connected
by an edge E in G. Let A be the symmetric incidence matrix
of G.1 Some examples of a network are:
− fully-connected network: in which A = 11ᵀ − I,
− random network: in which two nodes are connected with
probability p,
− ring network: in which Aij,i 6=j = 1 iff |i− j| mod n ≤ l
for some l ∈ N.
Upon receiving the messages from its neighbors, each node Vi
updates its estimate of xi(t). In the distributed optimization
problem, the goal is to determine a set of communication strate-
gies and estimate update rules such that each xi(t)→ x∗.

In the following, given the time sequence c(t) ∈ Rn, we
will denote the time and space average as ĉ(t) = 1

t

∑t
t′=1 x(t′)

and c(t) = 1
n

∑n
i=1 ci(t) respectively.

The DCDA algorithm: In the DCDA algorithm, each node Vi
maintains both an estimate of the optimization variable, xi(t),
and its dual variable, zi(t). At each time instant, both the pri-
mal variable and the dual variables are updated according to
the message received from the neighboring nodes and the sub-
gradient of the objective function fi in the primal estimate xi,
gi(t). At each iteration, each node i broadcasts a subset of its d
coordinates of the dual variable z(t) to a subset of of its neigh-
bors. For instance, node i broadcasts coordinate k to neighbors
Nk(i). The update of the dual variable is a component wise
update

[zi(t+ 1)]k =
∑

j∈Nk(i)

P kij(t)[zj(t)]k + [gi(t)]k ∀ k, (2)

where P k(t) is a doubly stochastic matrix and where P kij > 0
if and only if Aij > 0 and the node j is broadcasting the set of
coordinates k to node i. In the following, we consider three dif-
ferent policies for the selection of the coordinate k broadcasted
by the nodes:
− static sharing scheme: at each time instant, nodes trans-
mit the same coordinates to their neighbors, corresponding to
P k(t) = P k ∀ t for some fixed P k.
− round robin scheme: in which the kth coordinate is shared
every π time instances, corresponding to P k(t) = Pπ when
t = nπ + k for some n ∈ N, else P k(t) = I.
− randomized scheme: in which nodes randomly and uni-
formly select the coordinate to be transmitted in each time in-
stant.

Note that the stated sharing scheme with P k = P cor-
responds to the DDA algorithm: this corresponds to the case
when nodes broadcast their entire dual variable to their neigh-
bors. Also note that, given a symmetric adjacency network

1That is, Aij is non-zero only if nodes i and j are neighbors.

Ak(t) for coordinate k at time t, we can obtain the doubly
stochastic matrix P k(t) as

Dk(t) = diag(Ak(t)1), P k(t) = I− Dk(t)−Ak(t)

maxiDk(t)ii + 1
.

At each time instant t, the primal variable xi(t) is com-
puted from zi(t) as:

xi(t) = Πψ,α(t−1)(zi(t)) (3)

The function Πψ,α(t) is a type of non-linear proximal projec-
tion and is used to stabilize estimates of the primal variable and
ensure that optimization constraints are satisfied. It is defined
as Πψ,α(t)(z) = argminx〈x, z〉 + 1

α(t)
ψ(x). {α(t)}∞t=0 is a

non-increasing sequence of positive step-sizes which typically
scales as 1/

√
t. Also, ψ : Rd → R is a proximal function, that

is assumed to be 1-strongly convex with respect to norm ‖ · ‖.
and positive defined. Examples of proximal functions include:
− squared proximal function: ψ(x) = 1

2
‖x‖22 is 1-strongly

convex with respect to the `2-norm.
− entropic proximal function: ψ(x) =

∑d
k=1 xi log xi − xi

is 1-strongly convex with respect to the `1-norm.
The performance of the DCDA algorithm is studied in terms of
the convergence to zero of the term f(x̂i(T ))−f(x∗). Finally,
we consider three extensions of the DCDA algorithm:
− stochastic gradient: the objective function subgradient is
not exactly known at each node,
− noisy communication: transmissions are corrupted by addi-
tive noise,
− quantized communications: in which transmissions are
quantized before communication.

3. MAIN RESULTS
The main results of the paper consists of the characterization of
the DCDA algorithm convergence rate for different coordinate
selection policies and communication networks.

Theorem 1. Let the sequences {xi(t)}∞t=0 and {zi(t)}∞t=0 be
generated by the updates (3) and (2) with step size sequence
{α(t)}∞t=0. Then for any x∗ ∈ X and for each node i ∈ V , the
DCDA algorithm is such that

f(x̂i(T ))− f(x∗) ≤ ψ(x∗)

Tα(t)
+

1

T

T∑
t=1

α(t− 1)‖ḡ(t)‖2∗ (4)

+
2L

nT

T∑
t=1

n∑
j=1

α(t)||z(t)− zj ||∗ +
L

T

T∑
t=1

α(t)||z(t)− zj ||∗.

The result in Thm. 1 is substantially equivalent to the re-
sult, of [4, Thm. 1]. The first two terms in (4) are optimization
error terms common to sub-gradient algorithms while the last
two are penalties incurred due to having different estimates at
different nodes in the network or the penalty from consensus.
The result in Thm. 1 can be further developed for specific com-
munication protocols.

Lemma 2. Static sharing scheme: For the settings in Thm.
1, the DCDA algorithm under the static coordinate sharing
scheme is such that

f(x̂i(T ))− f(x∗) ≤ ψ(x∗)

Tα(T )
(5)

+
L2

T

T∑
t=1

4α(t− 1)

(
2 min(d, n) log

√
ndT

1−maxk σ2(P k)
+ 3

)
,
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where σ2(M) is the second largest eigenvalue of M .

Lem. 2 implies that for the choice of α(t) = C/
√
t for

an appropriate C, the error scales as L
√

min(d,n) log(n1/2dT )

T (1−maxk σ2(P
k))

.

The error scales as T−1/2, which is a common factor gen-
erally observed when studying the convergence of stochastic
communication schemes. The term 1/1 − σ2(P k) determines
how quickly nodes come to a consensus in coordinate k. When
P k = P , we do not obtain the factor min(d, n) retrieving the
results of the DDA algorithm of [4].

Lemma 3. Round robin scheme: For the settings in Thm.
1, the DCDA algorithm under the round robin m−coordinate
sharing scheme is such that

f(x̂i(T ))− f(x∗) ≤ ψ(x∗)

Tα(T )
(6)

+
L2

T

T∑
t=1

α(t− 1)

(
10 +

12d log 2
√
nT

m(1− σ2(P ))

)
.

With an appropriate choice of the step size, the error in

Lem. 3 scales asL
√

d log(nT )
mT (1−σ2(P ))

. Thus, we would need twice
the amount of time to achieve a fixed error ε if we transmit half
the number of coordinates m at each time instant.

Lemma 4. Randomized scheme: For the settings in Thm. 1,
the DCDA algorithm under the randomized coordinate sharing
scheme is such that, with probability greater than 1− δ,

f(x̂i(T ))− f(x∗) ≤ ψ(x∗)

Tα(T )
(7)

+
L2

T

T∑
t=1

α(t− 1)

(
10 + 18

min(d, n) log Tdn1/3/δ

1−maxk σ2(E[P k(t)2])

)
.

The result in Lem. 4 is similar to the static coordinate shar-
ing case with the expected doubly stochastic sharing matrix
used. Consider the specific case where the nodes collectively
share coordinate k with all other nodes with probability ρ. In
this case, P k(t) = 1

n
11ᵀ with probability ρ, else P k(t) = I.

In this case, the error scales as L
√

log Tdn/δ
ρT

with high prob-
ability. Similar to the round robin case, the analysis shows an
inverse dependence between the number of coordinates shared
and the time needed for convergence.

3.1. Variations of the DCDA algorithm

In this section we study three variations of the DCDA scheme
as introduced in Sec. 2. First, we consider the case in which
each node does not have access to the exact gradient of its lo-
cal function but instead obtains a noisy estimate of this value.
The DCDA algorithm for the stochastic gradient setting simply
uses the stochastic gradient in place of the actual gradient. Con-
vergence is studied under some mild assumptions on the noisy
gradient value.

Assumption 1. Assume Ft to be the σ-field that contains all
information known by all nodes until time t and let g′(t) be the
stochastic gradient at time t. Further assume that:
• the stochastic gradient g′i(t) is an unbiased estimate of the
actual gradient, i.e. E[g′i(t)|Ft] ∈ ∂fi(xi(t)),
• the stochastic gradient is bounded. ‖g′i(t)‖∗ ≤ L, and
• the set X satisfies ‖x− x′‖ ≤ R ∀x, x′ ∈ X .

Lemma 5. Stochastic gradient DCDA algorithm: For the
settings in Thm. 1 and under the assumptions in Ass. 1, the
stochastic gradient DCDA algorithm is such that, with proba-
bility 1− δ,

f(x̂i(T ))− f(x∗) ≤ (4) + LR

√
1

T
8 log

1

δ
. (8)

From Lem. 5, we conclude that the scaling of the error
of the stochastic gradient DCDA algorithm is the same as the
DCDA algorithm.

Let us next consider the noisy communication scenario.
More precisely, message zj(t) transmitted at time t from node
j to node i suffers from additive noise nij(t), i.e. node i ob-
serves uij(t) = zj(t) + nij(t)

The DCDA algorithm for the noisy communication setting
uses the noisy dual variable estimate uij(t) instead of the actual
value zj(t). Convergence is shown under some assumptions on
the noise sequence and for the static sharing scheme.

Lemma 6. Noisy communication static staring scheme
DCDA algorithm: Consider the settings in Thm. 1 where the
function is L-Lipschitz with respect to the `2-norm. Further as-
sume that there exists R such that supx,x′∈X ||x− x′||2 ≤ R.
Under the assumptions that each nij(t) has independent zero-
mean sub-Gaussian components of power γ2/d, the noisy
communication static sharing DCDA algorithm is such that,
with probability 1− δ,

f(x̂i(T ))− f(x∗) ≤ (5) + γ(R+ 2L)

√
2 log 3

δ

nT
+

T∑
t=1

α(t− 1)

×
(
γ2(1 +

√
8 log 3

δ
)

ndT
+

3L

T

√
2γ2 log 6Tnd

δ

(1−maxk σ2(Pk)2)

)
. (9)

Finally, we consider the case in which the communication
among nodes is quantized using infinite-level uniform quantiza-
tion. At each time step, a node broadcasts the quantized scaled
dual variable update

[ui(t)]k =

⌊
[zi(t)]k − [zi(t− 1)]k

s(t)
+ ∆ik(t)

⌋
, (10)

where ∆ik(t)
iid∼ U([−1/2,+1/2]) is dither used to guarantee

that the quantization noise is uniformly distributed in the inter-
val [−1/2,+1/2], while s(t) > 0 is a zooming sequence that
converges to zero and is known a priori to all nodes. The dual
update operation is replaced by:

[zi(t+ 1)]k =
[
zi(t) + gi(t)− gi(t− 1) +

∑
j

Pkij(t)s(t)uj(t)
]
k
.

Lemma 7. Quantized communication static coordinate
scheme DCDA algorithm: Consider the settings in Thm. 1
where the function is L-Lipschitz with respect to the `2-norm.
Furthermore define

ν(t) = max
k

t∑
r=0

s2(r)σ2(P k)2(t−r+1). (11)

Under these assumptions, the quantized communication static
sharing DCDA is such that

f(x̂i(T ))− f(x∗) ≤ (5) +R

√
ŝ2(T )

log 1/δ

T
+

T∑
t=1

α(t− 1)

×
(
2s(t)L+ s2(t)

nT
+

3L

T

√
2ν(t) log(2Tnd/δ)

)
. (12)
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Fig. 1: Classification performance with distributed SVM
.

4. NUMERICAL SIMULATIONS
For numerical simulations, we consider the scenario in which
the function fi(x) arises from evaluating a common loss func-
tion ` over a set of m local measurements {zij}mj=1: corre-
spondingly we have

f(x) =

n∑
i=1

fi(x) =

n∑
i=1

m∑
j=1

`(x, zij). (13)

Support Vector Machine (SVM): In the first case, we look
at using support vector machines for classification. Each data-
point at a local node consists of a label lij uniformly drawn
from {−1, 1} and the data point zij

iid∼ N (µlij ,Σ). The linear
SVM algorithm finds a hyperplane that separates data drawn
from the two distributions with the maximum margin

`(x, (zij , lij)) =
1

2d
||x||22 + C

m∑
j=1

max
(

1− lijxT zij ; 0
)
.

In Fig. 1 we plot the simulation results for X ∈ R30, n = 10
and m = 10 and full network connectivity. At each instant
in time, the nodes collectively sample a certain fraction Γ of
their coordinates to share. For this scenario, we compare the
performance for Γ ∈ {0, 1/2, 1/4, 1}. The performance for
the centralized SVM algorithm is also plotted for comparison.
As can be observed, without any communication, nodes reach a
suboptimal solution. To reach 90% classification accuracy rate,
nodes take twice as long if they share only half their coordi-
nates.
Linear Regression: Next, we investigate the effect of noisy
communication and stochastic gradient in the DCDA algorithm
for the classic linear regression problem. We consider the case
where x ∈ R30, n = 10 and m = 20 and a fully con-
nected network. Note that local measurements consist of ran-
dom normal measurement vectors aij and the measurement
zij . For the noisy communication scenario, each node observes
zij = Aijx + nij ,for ni = [ni1, . . . , nid]

iid∼ N (0,Σ) and
fi(x) = `(x, (Aij , zij)) = 1

2
‖Ai:x−zi:‖22 (with a slight abuse

of notation). In the stochastic gradient case, nodes form mini-
batches of size 4 as opposed to using all 20 data points for each
iteration. As can be seen in Fig. 2, there is minimal loss in
performance from using stochastic gradients or when noise is
added to the coordinates being shared. This suggests that using
less computationally expensive stochastic gradients, or quanti-
zation effects creating additive noise may not significantly alter
performance.

0 50 100 150 200 250 300
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101

||
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x
* |
| 2
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noisŷ0.1
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Fig. 2: Impact of stochastic gradients, noisy communications
on performance of DCDA for linear regression
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circlêrand
circlêrobin

Fig. 3: Robust regression performance.
Robust Regression: Finally, we consider the robust regres-
sion problem in which each node observes zij = Aijx +
(1 − bij)oij + bijnij where x is in the unit simplex ([x]i ≥
0, ‖x‖1 = 1) and bij is a binomial noise that modulates be-
tween a large outlier Gaussian noise oij or smaller additive
Gaussian noise nij . The `1 penalty is used as the loss function
or fi(x) = `(x, (Aij , zij)) = ‖Ai:x − zi:‖1. For this prob-
lem, we consider an entropic proximal function that ensures
that the estimate is in the probability simplex and minimize
the `1-norm. In the simulation, we compare the round robin
scheme and the randomized scheme where the amount of com-
munication is kept equal. Both these schemes are compared for
the fully connected network as well as a circle topology where
nodes are connected to the closest neighbor on each side. Esti-
mate x ∈ R20 and m,n = 10. The performance is presented
in Fig. 3. The performance of the fully connected network is
better than the circle topology because more communication is
taking place, allowing estimates to quickly travel through the
network. No significant difference in performance between the
randomized and round robin schemes is observed.

5. CONCLUSION
We considered the problem of distributed optimization with
limited communication in which nodes collectively solve a con-
vex optimization problem but have a limitation on the transmis-
sion among neighbors. We proposed a distributed coordinate
dual averaging algorithm for this problem and analyzed its per-
formance. We showed that the time required to achieve a fixed
accuracy would double if the rate limitation in messages be-
tween nodes were halved. We also show convergence in the
scenario of stochastic gradients, noisy and quantized commu-
nication.

4607



A. REFERENCES

[1] J. N. Tsitsiklis, “Problems in decentralized decision mak-
ing and computation.” Massachusetts Institute of Tech
Cambridge Lab for Information and Decision Systems,
Tech. Rep., 1984.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient meth-
ods for multi-agent optimization,” IEEE Transactions on
Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[3] I. Lobel and A. Ozdaglar, “Distributed subgradient meth-
ods for convex optimization over random networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 6,
p. 1291, 2011.

[4] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual av-
eraging for distributed optimization: Convergence anal-
ysis and network scaling,” IEEE Transactions on Auto-
matic control, vol. 57, no. 3, pp. 592–606, 2012.
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