
DISTRIBUTED NONCOHERENT TRANSMIT BEAMFORMING FOR DENSE SMALL CELL
NETWORKS

Quang-Doanh Vu∗, Le-Nam Tran†, and Markku Juntti∗

∗ Centre for Wireless Communications, University of Oulu, P.O.Box 4500, FI-90014, Finland;
Email: {doanh.vu, markku.juntti}@oulu.fi.

† School of Electrical and Electronic Engineering, University College Dublin, Ireland. Email: nam.tran@ucd.ie.

ABSTRACT

Beamforming design for downlink coordinated multi-point (CoMP)
transmission of dense small cell networks is considered. The goal
is to maximize the weighted sum rate of the system subject to con-
straints on maximum transmit power at macro cell and small cell
base stations (BSs). Here we focus on the noncoherent joint trans-
mission technique, since it does not require tight network synchro-
nization, and thus is more practically appealing. The considered op-
timization problem is intractable, thus we adopt the inner approxi-
mation (IA) to efficiently derive a locally optimal solution. Then,
we develop a distributed implementation of the proposed IA based
algorithm, based on the alternating direction method of multipliers
(ADMM). More explicitly, in the distributed algorithm, the convex
approximate subproblems obtained by the IA principles are solved
by the ADMM procedure. As the result, the beamforming vectors
are computed locally at the BSs. Numerical results are provided to
confirm the validity of the proposed algorithms.

Index Terms— Dense small cell networks, noncoherent joint
transmission, beamforming design, distributed algorithm, inner ap-
proximation, alternating direction method of multipliers.

1. INTRODUCTION

The development of wireless communications has risen the chal-
lenge of tremendous mobile data demand for the upcoming mobile
networks. It is foreseen that the total mobile traffic will be a ten-
fold increase by 2023 compared to 2017 [1]. In addition, the future
mobile networks are going to introduce various service categories
such as enhanced mobile broadband, massive machine type com-
munications (MTC), and ultra-reliable low-latency communications
(URLLC) to support the diverse communications requirements [2].
Many technologies have been developed in order to meet these chal-
lenges, and dense small cell deployment is considered as one of the
promising solutions [3]. With densification of low-cost base stations
(BSs), not only the existing spectrum is exploited efficiently by the
spatial reuse, but also the energy efficiency is enhanced due to the
short-range wireless transmission [4]. Additionally, the proximity
of the cells to the users can support low latency services as well as
guarantee quality of experience (QoE) [5].

However, since the cells become closer, efficiently managing
inter-cell interference is one of the keys to a successful implemen-

This work has been financially supported by Academy of Finland under
the projects “Flexible Uplink-Downlink Resource Management for Energy
and Spectral Efficiency Enhancing in Future Wireless Networks (FURMES-
FuN)” (grant 31089), and “6Genesis Flagship” (grant 318927). This publica-
tion has emanated from research supported in part by a Grant from Science
Foundation Ireland under Grant number 17/CDA/4786.

tation [6]. To this end, coordinated multi-point (CoMP) transmis-
sion is widely considered in small cell networks where the users re-
ceive data from multiple BSs, i.e., joint transmission (JT) [7, 8]. In
this regard, the coherent JT would be the best technique improving
network capacity. However, the requirement of strict network syn-
chronization accuracy makes it difficult and high-cost to practically
deploy. Therefore, the noncoherent JT has been received growing at-
tention since it requires less strict network synchronization accuracy
compared to coherent counterpart [8–11].1 In particular, beamform-
ing designs for minimizing the power consumption subject to users’
minimum data rate were investigated in [8,10]. The problem of load
balancing was investigated in [9]. Very recently, beamforming de-
sign for the problem of weighted sum rate (WSR) under the limited
fronthaul capacity for cloud radio access network was considered
in [11]. Commonly, the prior works mentioned above mainly fo-
cus on centralized approaches, and the distributed algorithms are not
available, while distributed architecture is more preferred in dense
small cell networks [3].

In this paper, we study the beamforming design problem in the
dense small cell networks where the BSs cooperate to serve a set of
users following the noncoherent JT protocol. The target is to max-
imize the WSR under the constraints of maximum transmit power
at BSs. The WSR problem is considered since it is general enough
to include other performance measures such as spectral efficiency
and guarantee the quality of services for the users (via appropriate
weights) as special cases [12]. Assuming that the beamforming com-
putation is performed at the BSs due to the distributed architecture of
the small cell networks, we propose an efficient distributed algorithm
where the beamforming vectors are determined locally (at BSs). To-
ward the goal, we first equivalently transform the nonconvex WSR
problem to which the inner approximation (IA) framework is applied
to achieve an efficient solution [13, 14]. Then, motivated by the ap-
preciated success of the alternating direction method of multipliers
(ADMM) in designing distributed algorithms reported in recent pub-
lications [15–18], we also rely on ADMM to decompose the convex
approximated problems obtained by the IA-based method into sub-
problems which can be solved locally at the BSs. More explicitly,
at each ADMM iteration, macro BS solves a second order cone pro-
gram (SOCP) while each of the small cell BSs solves a quadratically
constrained quadratic program (QCQP).

Notation: Bold lower and upper case letters represent vectors
and matrices, respectively; || · ||2 represents the `2 norm; | · | rep-
resents the absolute value; Cx×y represents the space of complex

1We note that the term ‘noncoherent’ used in this work refers to the signal
procesing coordination amongs BSs. It is distinguished from which refering
to the tranmission without knowledge of channel state information at both
sides of tranmitter and receiver.
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matrices of dimensions given in superscript; CN (0, a) denotes a
complex Gaussian random variable with zero mean and variance a;
Re{·} represents real part of the argument. XT and XH stand for
the transpose and the Hermitian transpose of X, respectively.

2. SYSTEM MODEL

We consider a region covered by a macro cell BS and a set of K
small cell BSs. Let us denote byK = {1, 2, ...,K+ 1} the set of all
BSs where {1} refers to the macro BS and the rest the small cell BSs.
BS k is equipped with Mk > 1 antennas. The BSs simultaneously
serve a set ofN single-antenna users, denoted byN = {1, 2, ..., N}
under the same frequency band. Let Bk and Ui denote BS k and
user i, respectively. Herein, we assume that the BSs collaborate us-
ing nonconherent JT. That means a user receives data from multiple
BSs, and the information for a specific user is coded independently
at individual BSs [8]. Particularly, let sik and vik ∈ CMk×1 be
the normalized symbol and the beamforming vector at Bk for Ui,
respectively. Let hik ∈ C1×Mk (row vector) denote the channel be-
tween Bk and Ui. The signal received at Ui under the assumption
of flat channels is given by

ri =
∑
k∈K

hikviksik +
∑
k∈K

∑
j∈N\{i}

hikvjksjk + zi (1)

where zi ∼ CN (0, σ2
i ) is the additive white Gaussian noise. The

first and second sum in the right side of (1) are the desired signal and
the interference, respectively. In this paper, users are assumed to de-
ploy successive interference cancellation technique to detect its own
signal and treat signal of other users as noise, the effective signal-to-
interference-plus-noise ratio (SINR) at Ui can be written as [8]2

γi =

∑
k∈K

|hikvik|2∑
k∈K

∑
j∈N\{i}

|hikvjk|2 + σ2
i

. (2)

We note that {γi}i∈N are achieved without phase synchronization
between BSs. We also remark that {γi}i∈N are the aggregated
instantaneous SINR, i.e., the total information received at Ui is
log(1 + γi) [8] (the derivation of γi can also be found in [11]).

We aim at designing beamforming vectors {vik}i,k so that the
WSR is maximized under the constraints of transmit power budget
at the BSs. Mathematically, the problem of interest reads

maximize
{vik}

∑
i∈N

wi log(1 + γi) (3a)

subject to
∑
i∈N

vH
ikvik ≤ Pk, ∀k ∈ K (3b)

where wi > 0 represents the priority of Ui, and Pk is the maximum
total transmit power available to Bk. Note that the SINR in (2) is
nonconvex with {vik}, which makes problem (3) mathematically
intractable [8].

3. PROPOSED DISTRIBUTED ALGORITHMS

3.1. Efficient Solution for (3) via Inner Approximation

We adopt the IA framework to develop efficient solution to (3),
which was inspired by our earlier work in [19]. To do so, we first
reveal the hidden convexity in (3) by transforming the problem into
the following equivalent form

2We note that the decoding order has no impact on γi [11].

maximize
{vik},{µi}

∑
i∈N

wi log(1 + µi) (4a)

subject to

∑
k∈K

|hikvik|2∑
k∈K

∑
j∈N\{i}

|hikvjk|2 + σ2
i

≥ µi, ∀i ∈ N , (4b)

∑
i∈N

vH
ikvik ≤ Pk, ∀k ∈ K (4c)

where {µi ≥ 0} are newly introduced variables. Problem (4) is
equivalent to (3) in the sense of the optimal set, which is justified by
the fact that, the constraints in (4b) are active at the optimality. Now,
the nonconvex parts lie in (4b), which can be equivalently rewritten
as

(4b)⇔


∑
k∈K

|hikvik|2/ui ≥ µi∑
k∈K

∑
j∈N\{i}

|hikvjk|2 + σ2
i ≤ ui

(5)

where {ui > 0} are slack variables. Note that the quadratic-over-
linear function is convex with the involved variables. In light of the
IA approach, we use a first order approximation as a convex lower
bound to derive an approximate convex problem. More explicitly,
let ({v(t)

i }, {µ
(t)
i }, {u

(t)
i }) be a feasible point, then the approximate

problem is

maximize
{vik},{µi},{ui}

∑
i∈N

wi log(1 + µi) (6a)

subject to
∑
k∈K

(Re{g(t)
ik vik} −A

(t)
ik ui) ≥ µi, ∀i ∈ N , (6b)

∑
k∈K

∑
j∈N\{i}

|hikvjk|2 + σ2
i ≤ ui, ∀i ∈ N , (6c)

∑
i∈N

vH
ikvik ≤ Pk,∀k ∈ K (6d)

where g(t)
ik = (2/u

(t)
i )(v

(t)
ik )HhH

ikhik andA(t)
ik = (|hikv(t)

ik |/u
(t)
i )2.

3.1.1. SOCP-Based Approximation

Since each wi is generally different, problem (6) containing a mix
of exponential cones and second order cones SOCs is treated as
a generic convex program. For computational benefit, we pro-
vide an SOCP approximation by using a lower bound of the log-
arithm function given as log(1 + µi) ≥ log(1 + µ

(t)
i ) + 2 −

2

√
(1 + µ

(t)
i )/(1 + µi). The validity of the bound according to the

IA principles is justified in [20, Sec. III-E]. With the bound and by
introducing new variables {δi} and {πi}, we arrive at the following
SOCP approximation

minimize
{vik},{µi},{ui}
{δi},{πi}

∑
i∈N

w̃
(t)
i πi (7a)

subject to ‖ [2, (πi − δi)] ‖2≤ (πi + δi),

1 + µi ≥ δ2
i , δi ≥ 1, ∀i ∈ N , (7b)

(6b), (6c), (6d) (7c)

where w̃(t)
i = wi

√
1 + µ

(t)
i . Successively solving (7) and updating

({v(t)
i }, {µ

(t)
i }, {u

(t)
i }) by the optimal solution of (7), we obtain the

sequence {
∑
i∈N wi log(1 +µ

(t)
i )}∞t=1 which is nondecreasing and

converges, since the feasible set of (4) is compact and nonempty [14,
Corollary 2.3].

4600



3.2. ADMM-Based Distributed Algorithm

We now develop a decentralized algorithm for the above IA-based
solution where the beamforming vectors {vik}i are designed locally
at Bk. The central idea is to use the ADMM to solve the convex ap-
proximation subproblem (7), which eventually leads to a distributed
implementation. Towards the goal, we first equivalently rewrite (7)
into the form amenable to the ADMM as

minimize
{vik},{µi},{ui},{δi},
{πi},{q̂ik},{q̃ik},{qik},
{ŷik},{ỹik},{yik}

∑
i∈N

w̃
(t)
i πi (8a)

subject to

Re{g(t)
i1 vi1} −

∑
k∈K

A
(t)
ik ui +

∑
k∈K̄

ỹik ≥ µi, ∀i ∈ N , (8b)

Re{g(t)
ik vik} ≥ ŷik, ∀i ∈ N , ∀k ∈ K̄ (8c)∑

j∈N\{i}

|hi1vj1|2 +
∑
k∈K̄

q̃ik + σ2
i ≤ ui,∀i ∈ N , (8d)

∑
j∈N\{i}

|hikvjk|2 ≤ q̂ik, ∀i ∈ N , ∀k ∈ K̄ (8e)

q̂ik = qik, ŷik = yik, ∀i ∈ N , ∀k ∈ K̄ (8f)

q̃ik = qik, ỹik = yik, ∀i ∈ N , ∀k ∈ K̄ (8g)
(6d), (7b) (8h)

where {q̂ik}, {q̃ik}, {qik}, {ŷik}, {ỹik} and {yik} are newly in-
troduced variables for decomposing (6b) and (6c) into constraints
which will be handled locally at macro cell BS and small cell BSs;
K̄ = {2, ...,K+1} is the set of small cell BSs. For presentation con-
venience, let us denote by x̃ , {{vi1}i, {µi}i, {ui}i, {δi}i, {πi}i,
{q̃ik}i,k, {ỹik}i,k} the local variables at the macro cell BS, and de-
fine its local feasible set as

S̃ , {x̃|(8b), (8d), (7b),
∑
i∈N

vH
i1vi1 ≤ P1}. (9)

Similarly, let us denote by x̂k , {{vik}i, {q̂ik}i, {ỹik}i} the local
variables at small cell BS Bk, k ∈ K̄, and define its local feasible set
as

Ŝk = {x̂k|Re{g(t)
ik vik} ≥ ŷik, ∀i ∈ N ,∑

j∈N\{i}

|hikvjk|2 ≤ q̂ik,∀i ∈ N ,
∑
i∈N

vH
ikvik ≤ Pk}. (10)

With these notations, we can rewrite (8) as

minimize
{x̃∈S̃},{x̂k∈Ŝk}
{qik},{yik}

∑
i∈N

w̃
(t)
i πi (11a)

subject to π̃ = φ̃, π̂k = φ̂k, ∀k ∈ K̄ (11b)

where π̃ , {{q̃ik}i,k, {ỹik}i,k}, π̂k , {{q̂ik}i, {ỹik}i}; φ̃ and
φ̂k are the rearranged vectors from the same set of global variables
({qik}i,k, {yik}i,k). The augmented Lagrangian function of (11) is

L({x̃}, {x̂k}, {qik}, {yik}; {ξ}, {ρk}) =(∑
i∈N

w̃
(t)
i πi + ξT(π̃ − φ̃) +

m

2
||π̃ − φ̃||22

)
+
∑
k∈K̄

(
ρT
k(π̂k − φ̂k) +

m

2
||π̂k − φ̂k||22

)
(12)

where ξ and {ρk}k∈K̄ are the Lagrangian multipliers and m is the
penalty parameter. In what follows, we present the variable update
at iteration (j + 1) of the ADMM.

3.2.1. Update Local Variables

Let ξ(j), φ̃(j), and {ρ(j)
k } be the values obtained at iteration j.

Macro cell BS B1 updates its local variables x̃ by solving the fol-
lowing SOCP

minimize
x̃∈S̃

(ξ(j))T(π̃ − φ̃(j)) +
m

2
||π̃ − φ̃(j)||22 +

∑
i∈N

w̃
(t)
i πi.

(13)

Small cell BS Bk updates its local variables x̂k by solving the fol-
lowing QCQP

minimize
x̂k∈Ŝk

(ρ
(j)
k )T(π̂k − φ̂

(j)
k ) +

m

2
||π̂k − φ̂

(j)
k ||

2
2. (14)

3.2.2. Update Global Variables

The global variables {qik} and {yik} are updated via finding the
minimum of the following quadratic function extracted from (12)

G(j)({qik}, {yik}) ,∑
k∈K̄

∑
i∈N

(
[ξ(j)]qik (q̃

(j+1)
ik − qik) +

m

2
(q̃

(j+1)
ik − qik)2

+ [ξ(j)]yik (ỹ
(j+1)
ik − yik) +

m

2
(ỹ

(j+1)
ik − yik)2

+ [ρ
(j)
k ]qik (q̂

(j+1)
ik − qik) +

m

2
(q̂

(j+1)
ik − qik)2

+[ρ
(j)
k ]yik (ŷ

(j+1)
ik − yik) +

m

2
(ŷ

(j+1)
ik − yik)2

)
(15)

where [ξ(j)]qik is the element in ξ(j) corresponding to constraint
q̃ik = qik; similar definition is applied to [ξ(j)]yik , [ρ

(k)
k ]qik and

[ρ
(k)
k ]yik . The closed-form of the minimizer of (15) is given as

q
(j+1)
ik =

([ξ(j)]qik +mq̃
(j+1)
ik ) + ([ρ

(j)
k ]qik +mq̂

(j+1)
ik )

2m
(16)

y
(j+1)
ik =

([ξ(j)]yik +mỹ
(j+1)
ik ) + ([ρ

(j)
k ]yik +mŷ

(j+1)
ik )

2m
. (17)

Updating q
(j+1)
ik and y

(j+1)
ik can be done at the macro cell BS

or small cell BS Bk. We herein suppose that B1 updates the

variables, which acquires the two scalars
[ρ

(j)
k

]qik+mq̂
(j+1)
ik

2m
and

[ρ
(j)
k

]yik+mŷ
(j+1)
ik

2m
from Bk.

3.2.3. Update Lagrangian Multipliers

The Lagrangian multipliers are updated as follows

ξ(j+1) = ξ(j) +m(π̃(j+1) − φ̃(j+1)) (18)

ρ
(j+1)
k = ρ

(j)
k +m(π̂

(j+1)
k − φ̂

(j+1)
k ). (19)

where ξ(j+1) is determined at B1 while ρ(j+1)
k is determined at Bk,

k ∈ K̄. For this, Bk requires q(j+1)
ik and y(j+1)

ik from B1.
Based on the presented variable updates, we propose a dis-

tributed algorithm outlined in Algorithm 1. It includes two stages:
the inner stage is the ADMM procedure solving IA subproblems; the
outer stage is the IA feasible point update using the values obtained
in the inner stage (Step 12). The values obtained at the last iteration
of the ADMM at IA iteration t are used for initializing ADMM
procedure at IA iteration t + 1 (Step 13). The initial values for the
algorithm (Step 1) will be specified in Section 4.
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Algorithm 1 Decentralized procedure solving (3)
1: Initialization: Set small εIA, t := 1 and j :=

1, choose initial values for ({v(0)
ik }, {µ

(0)
i }, {u

(0)
i }) and

({q(0)
ik }, {y

(0)
ik }; ξ

(0), {ρ(0)
k }).

2: repeat {Outer stage (SCA procedure)}
3: Bk receives u(t)

i from B1 to form g
(t)
ik ; and B1 receives scalar

|hikv(t)
ik | from Bk to form A

(t)
ik , k ∈ K̄.

4: repeat {Inner stage (ADMM procedure)}
5: B1 updates x̃(j+1) by solving (13); Bk, k ∈ K̄, updates

x̂k using (14)

6: B1 receives
([ρ

(j)
k

]qik+mq̂
(j+1)
ik

)

2m
and

(
[ρ

(j)
k

]yik+mŷ
(j+1)
ik

)
2m

from Bk, then updates q(j+1)
ik and y(j+1)

ik using (16) and
(17).

7: B1 updates ξ(j+1) by (18); Bk, k ∈ K̄, receives q(j+1)
ik

and y(j+1)
ik from B1 then updates ρ(j+1)

k using (19).
8: j := j + 1.
9: until ADMM convergence

10: Obtain ({v∗ik}, {µ∗i }, {u∗i }, {q∗ik}, {y∗ik}; ξ∗, {ρ∗k}), the so-
lution from the ADMM procedure.

11: Update t := t+ 1, j := 1

12: Update ({v(t)
ik }, {µ

(t)
i }, {u

(t)
i }) := ({v∗ik}, {µ∗i }, {u∗i })

13: Update ({q(0)
ik }, {y

(0)
ik }; ξ

(0), {ρ(0)
k }) :=

({q∗ik}, {y∗ik}; ξ∗, {ρ∗k})
14: until

∑
i∈N wi(log(1 + µ

(t+1)
i )− log(1 + µ

(t)
i )) ≤ εIA

4. NUMERICAL RESULTS

We consider a circular region with a radius of 500m centered at
B1, and the small cell BSs randomly placed in the annulus with
radii 300m and 500m. The channels are simply modeled as hik ∼
CN (0, `−βik I) where `ik is the distance in meters and β is the path
loss exponent which is taken as 4. The noise power density is N0 =
−139 dBm/Hz. The operation bandwidth is 1 MHz. The maximum
transmission power at the BSs are P1 = 43 dBm and Pk = 35 dBm,
∀k ∈ K̄. Without loss of generality, we take wi = 1, ∀i ∈ N .
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Fig. 1. Achieved weighted sum rate over ADMM iterations with two
random channel realizations.

For initial points, we first randomly generate beamforming vec-
tors {v(0)

ik } which are scaled (if necessary) so that (3b) is satisfied.
Based on {v(0)

ik }, we determine {µ(0)
i }, {u

(0)
i }, {q

(0)
ik }, and {y(0)

ik }
by letting(4b), (6c), (8c), and (8e) hold with equality. The initial
value for the Lagrangian multipliers are simply taken as ξ(0) = 1
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Fig. 2. Average WSR of the considered schemes with different num-
ber of small cell BSs. We take the number of users, N , as 4 and
6.

and ρ
(0)
k = 1 for all k ∈ K̄. The convex programs are solved by the

solver MOSEK [21] with the modeling toolbox YALMIP [22].
Beside the noncoherent JT, we provide the performance of

two other schemes for comparison purpose. The first scheme, la-
beled ‘coherent JT’, is the coherent joint transmission. The second
scheme, labeled ‘CB’, is the coordinated beamforming, i.e., each
user only receives data from the nearest BS.

Fig. 1 shows the achieved WSR over ADMM iterations over two
random channel realizations. The values are obtained by the cacu-
lated beamforming vectors at the corresponding iteration. The ‘cen-
tralized solution’ is the solution of (3) achieved via solving approxi-
mated problem (7) by the solver. We can see from the figure that on
the considered channels, the distributed procedure can achieve a per-
formance close to that of the centralized solution within 100 ADMM
iterations.

Fig. 2 plots the average WSR performance of the considered
schemes as functions of number of small cell BSs. An interesting
result observed from the figure is that CB scheme (with the user as-
sociation rule of connecting to the nearest BS) might fail to exploit
the densification gain. Another result is that the coherent JT clearly
is superior to the others. However, as discussed, the requirements of
synchronize accuracy make it impractical, and it is not convenient to
implement distributively. Although the performances of noncoher-
ent JT is lower than that of coherent JT, it outperforms CB and is
capable of exploiting densification gain. The results suggest that the
noncoherent JT with the proposed distributed procedure is a promis-
ing candidate for dense small cell networks.

5. CONCLUSION

We have investigated downlink noncoherent JT in dense small cell
networks. Particularly, we have considered the problem of designing
beamforming vectors at the macro cell and small cell BSs for maxi-
mizing WSR of the network which is mathematically intractable. In
order to overcome the nonconvexity, we has adopted the well-known
IA framework, which solves a series of the convex approximate sub-
problems so that the obtained sequence of objective values is nonde-
creasing. More importantly, assuming that the beamforming design
is carried out among the BSs, rather than a central computing unit
as in CRANs, we has developed the distributed algorithms by using
ADMM technique to solve the subproblem. The results have demon-
strated that the noncoherent JT is a good transmit alternative to the
coherent JT in terms of the WSR performance.
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