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ABSTRACT

Next-generation communication networks are envisioned to exten-
sively utilize storage-enabled caching units to alleviate unfavorable
surges of data traffic by pro-actively storing anticipated highly popu-
lar contents across geographically distributed storage devices during
off-peak periods. This resource pre-allocation is envisioned not only
to improve network efficiency, but also to increase user satisfaction.
In this context, the present paper designs optimal caching schemes
for distributed caching scenarios. In particular, we look at networks
where a central node (base station) communicates with a number
of “regular” nodes (users or pico base stations) equipped with lo-
cal storage infrastructure. Given the spatio-temporal dynamics of
content popularities, and the decentralized nature of our setup, the
problem boils down to select what, when and where to cache. To ad-
dress this problem, we define fetching and caching prices that vary
across contents, time and space, and formulate a global optimization
problem which aggregates the costs across those three domains. The
resultant optimization is solved using decomposition and dynamic
programming techniques, and a reduced-complexity algorithm is fi-
nally proposed. Preliminary simulations illustrating the behavior of
our algorithm are finally presented.

Index Terms— Caching, Fetching, Dynamic programming,
Value iteration, Dynamic pricing.

1. INTRODUCTION

The tremendous growth of data traffic over wired and wireless net-
works motivates the need for emerging technologies to meet the
ever-increasing data demands [1]. Recognized as an appealing so-
lution is the so-called caching, which refers to storing reusable pop-
ular contents across geographically distributed storage-enabled net-
work entities [1, 2]. The rationale here is to smoothen out the un-
favorable shocks of peak traffic periods by pro-actively storing an-
ticipated highly popular contents at these storage devices and during
off-peak instances. This idea of resource pre-allocation is envisioned
to achieve significant network resource savings in terms of e.g., en-
ergy, bandwidth, and cost. Which already comes with user satisfac-
tion [1, 2, 3].

Utilizing (stochastic) optimization approaches to enable content-
agnostic storage-enabled network entities to pro-actively cache
popular contents has quickly gained attention. Under static pop-
ularity settings, a multi-armed bandit formulation is considered
in [4]. The coded, and convexified version is studied in [5]. Context
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and trend aware learning approaches are provided in [6, 7] and a
transfer learning one in [8]. Belief propagation based distributed
cooperative caching is investigated in [9], and an ADMM based
distributed approach in [10]. Recently, by considering dynamic pop-
ularities, reinforcement learning approaches are utilized to cache
contents [11, 12].

Existing caching approaches accounting for dynamic populari-
ties focus on enabling a single cache entity to decide (learn) what
and when to cache. However, since caching is being carried out in a
network level, to fully unleash its potentials a distributed approach is
essential to efficiently utilize the globally available storage capacity
over the entire network. Building on this observation, the present
paper proposes optimal dynamic schemes to operate over a network
where nodes, connected to a central controller, receive user requests
and are equipped with local cache memories where they can store
specific contents. In particular, the optimal cache-fetch decisions
across caching entities will be found as the solution of a constrained
optimization aimed at reducing an expected network cost aggregated
across caching entities, contents and time instants. Since the caching
decision at a given node not only affects the instantaneous cost but
also the availability of the content in the next slots, the problem is in-
deed a dynamic programming (DP) one. DP algorithms typically in-
volve functional estimation and, as a result, they are computationally
expensive. A key aspect of this paper is to combine a marginalization
and a decomposition approach to effectively reduce the dimension-
ality of the problem and, hence, limit the computational complexity.

2. PROBLEM FORMULATION

Consider a distributed caching system composed of a central node
(CN) connected to a number of regular nodes, all devised with local
storage devices. The CN can be a base station in a cellular network,
or a gateway router in a content delivery network. The nodes are
then user devices or access points, correspondingly. We consider
m = 1 · · ·M nodes, f = 1, 2 · · ·F files, and t = 1, 2, · · · time
instants. For convenience the CN, which is also connected to a cloud
through a (congested) back-haul, is indexed by m = 0. With this
notation, at a given slot, every node receives user file requests as
indicated by the binary variable rft,m, where rft,m = 1 denotes that
during slot t file f was requested at nodem, and rft,m = 0 otherwise.
Upon receiving a file request, the node forwards the request to the
CN unless the file is already available in the cache of the node. If
file f is available at the CN, the content is served to node m. If not,
the CN fetches required file either from the cloud or from one of the
local nodes. Moreover, once the content has been delivered, all the
nodes having the file must decide whether to keep it or to discard it.
Decisions are made based on the state of the system as well as on the
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prices (costs) associated with caching and fetching, with the overall
goal being to minimize the long-term aggregated cost.

2.1. Optimization variables and constraints

To formalize the setting, let us define the binary fetching variables
wft,m, andwft,m, as well as the binary storing decision variable aft,m.
For the nodes, havingwft,m = 1, implies fetching file f at slot t from
node m to the CN, while wft,m = 0 means “not fetching”. Similarly
wft,m indicates if the CN fetches the file f from node m at time
t. To have a compact notation, fetching from the cloud to the CN
is denoted as wft,0 = wft,0 = wft,0. For all the nodes, the indicator
aft,m = 1 means that file f will be stored at nodem at the end of slot
t, and the binary storage state variable sft,m accounts for availability
of file f at node m at the beginning of slot t. The availability of file
f directly depends on the preceding caching decision, thus the first
set of constraints is

(C1) sft,m = aft−1,m, (1)

which must hold ∀f, t,m. Having rft,m = 1 and sft,m = 0 necessi-
tates requesting the file from the CN, which in turn requires fetching
it either from the cloud or from the nodes having the content. This
gives rise to the second set of constraints

(C2) rft,0 ≤ w
f
t,0 + sft,0 +

M∑
m=1

(
wft,m . sft,m

)
. (2)

The product wft,m.s
f
t,m guarantees that fetching from a node is fea-

sible only if the node has the file. Storing a file at a node necessitates
to either the file being available locally or fetching it from the CN,
giving rise to the following constraint

(C3) aft,m ≤ s
f
t,m + wft,m, ∀m = 1 · · ·M. (3)

Likewise, storing at the CN requires

(C4) aft,0 ≤ s
f
t,0 + wft,0 +

M∑
m=1

wft,m . sft,m (4)

Finally, a node can fetch only if

(C5) wft,m ≤ s
f
t,0 + wft,0 +

∑
m′ 6=m

wft,m′ . s
f
t,m′ . (5)

2.2. Prices and aggregated costs

As assumed earlier, both caching and fetching are costly. For node
m, at time t and for file f , let ρft,m, λft,m, and λ

f
t,m stand for costs of

storing, fetching to, and fetching from the CN, respectively. Then,
the overall incurred cost is cft =

∑M
m=0 c

f
t,m, where for regular

nodes we have that

cft,m := λ
f
t,mw

f
t,m + ρft,ma

f
t,m, ∀m = 1 · · ·M, (6)

while for m = 0 (the CN) we have

cft,0 := λt,0w
f
t,0 + ρft,0a

f
t,0 +

M∑
m=1

λft,mw
f
t,m, (7)

with λt,0 being the cost of fetching from the cloud and ρt,0 being
the caching cost for the CN.

2.3. Problem Formulation

Let us collect all caching and fetching costs during slot t for file f
at vectors ρρρft and λλλft =

[
λλλft ,λλλ

f

t

]
, and define similarly the action

vectors aaaft and wwwft = [wwwt,wwwt]
> as well as the request vector rrrft .

The first step is to define the aggregated cost to be minimized. Since
there is an inherent uncertainty in the state of the system, we consider
the discounted long-term incurred average cost

C̄ := E

 ∞∑
t=0

F∑
f=1

γtcft

(
aaaft ,www

f
t ;ρρρft ,λλλ

f
t

) (12)

where γt is an exponentially decaying weight which reduces the im-
pact of distant (and therefore more uncertain) costs, and the expec-
tation is taken with respect to the random variables {rrrft , ρρρ

f
t ,λλλ

f
t }f,t.

This paper assumes these variables are stationary, so that the expec-
tations can practically be estimated. In addition the knowledge of
the state variables {rrrft , ρρρ

f
t ,λλλ

f
t }f,t is causal, that is, their exact val-

ues are revealed at the beginning of every time slot t, and all the
fetching and caching decisions are made sequentially. The goal is
then to make sequential fetching-caching decisions that minimize
the expected current plus future costs while satisfying the constraints
(C1)-(C5). This gives rise to the following optimization problem

(P1) min
{(wwwf

k
,aaa

f
k
)}f,k≥t

C̄t :=

∞∑
k=t

F∑
f=1

γk−tE
[
cfk

(
aaafk ,www

f
k ;ρρρfk ,λλλ

f
k

)]
s.t. (C1) – (C5),

Due to (C1), (P1) is indeed a DP, because current decisions will in-
fluence not only current, but also future costs. As a result, one needs
to [13, p. 10]: (i) identify the current and the expected future aggre-
gated cost (the latter gives rise to the so-called value function), (ii)
write the Bellman optimality conditions; and (iii) suggest a method
to estimate the value function. In addition, note that (P1) is indeed
decomposable across files, since the fetching and caching prices are
different for f , t, and m. In most practical setups, those prices are
in fact (stochastic) Lagrange multipliers associated with constraints
that have been handled using dual decomposition techniques (see,
e.g., [14]). Definition of those prices for the investigated caching
setup is certainly of interest, but out of the scope of this paper. For
this reason, in the sequel the focus is on solving (P1) for a single
file f . Hence, the superscript f will be dropped. In addition, due to
stationarity the subscript t will be dropped occasionally as well.

3. DP-BASED OPTIMAL FETCHING AND CACHING

To solve (P1), collect all the storage state variables in vector ssst, de-
fine θt = [rrrt, ρρρt,λλλt], and assume that their initial values sss0 and
θθθ0 are given. Then the optimal fetch-cache decisions (www∗t , aaa

∗
t ) are

expressible as the solution to (8). The objective in (8) is then rewrit-
ten in (9) as the summation of current and discounted average future
costs. The form of (9) is testament to the fact that problem (P1) is
a DP and the caching decisions aaa influence not only the current cost
ct(·) but also future costs through the second term as well. Bellman
equations can be leveraged for tackling such a DP. Under the sta-
tionarity assumption for variables {θθθt}t, the term accounting for the
future cost can be rewritten in terms of the stationary value function
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(www∗t , aaa
∗
t ) : = arg min

(www,aaa) s.t. (C1)-(C5)

{
E

[
min

(wwwk,aaak) s.t. (C1)-(C5)

{
∞∑
k=t

γk−t
[
ck (aaak,wwwk;ρρρk,λλλk)

∣∣∣aaat = aaa,wwwt = www,ssst = sss0,θt = θ0

]}]}
(8)

= arg min
(www,aaa) s.t. (C1)-(C5)

{
ct (aaa,www;ρρρt,λλλt) + E

θk

[
min

(wwwk,aaak) s.t. (C1)-(C5)

∞∑
k=t+1

γk−t
[
ck (aaak,wwwk;ρρρk,λλλk)

∣∣∣ssst+1 = aaa
]]}

(9)

V (sss,θ) : = min
(www,aaa) s.t. (C1) - (C5)

{
E
θk

[
min

(wwwk,aaak) s.t. (C1) - (C5)

{
∞∑
k=t

γk−t
[
ck (aaak,wwwk;ρρρk,λλλk)

∣∣∣aaat = aaa,wwwt = www,ssst = sss,θt = θ
]}]}

(10)

V̄ (sss) : = E
θ

[V (sss,θ)] = E
θ

min
(www,aaa) s.t. (C1) - (C5)

{
ct(aaa,www;ρ,λ) + γV̄ (aaa)

}
(11)

V (sss,θ) [13, p. 68]. This function, formally defined in (10), captures
the minimum aggregated cost starting from “state” (sss,θ). Assuming
that prices and requests are i.i.d. across time slots and nodes, it can
be shown that the solution for (P1) can also be found in terms of the
reduced value function, V̄ (sss) := E

θ
[V (sss,θ)], which depends only

on sss [15]. The reduced value function is important since not only
enables solving (P1), but also alleviates the computationally burden
of estimating V (sss,θ), which has a much larger dimensionality.

By rewriting the reduced value function recursively as the sum-
mation of the instantaneous cost and the aggregated future values,
one readily arrives at the Bellman equations provided in (11). Thus,
the problem at time t reduces to

(P2) min
(www,aaa)

ct(aaa,www;ρρρt,λλλt) + γV̄ (aaa)

s.t. (C1)- (C5),

which requires the estimation of the reduced value function V̄ (·).
This can be done using the value iteration algorithm as tabulated in
Alg. 1; for a detailed discussion cf. [13, p. 100]. Alternatively, if
the distributions of the random parameters are unknown, stochastic
online solvers based on Q-learning are well motivated [13, p. 148].
This is left as future work.

3.1. Discussing the solution to (P2)

To gain insights on the optimal fetching-caching solution, suppose
that at time t, we have st,0 = 0 and the CN receives file request
from node m′. In such a case, rt,0 = 1 and thus (C2) requires
wt,0 +

∑
m∈Mt

wt,m ≥ 1, whereMt denotes the set of nodes for
which st,m = 1. Since the reduced value function does not depend
on the fetching decisionwwwt and the cost ct is linear in wt,m [cf. (6)
and (7)], we have that the optimal fetching is

w∗t,m =

{
1 if m = arg minm′′∈Mt∪{Cloud} λt,m′′
0 for all other m

Deciding on the caching variable aaat is more complicated. Suppose
first that the value function can be written as V̄ (sss) =

∑M
m=0 V̄m(sm)

and that node m′ was the one requesting the content. Then, we have
that, the cost of setting at,m = 1 is

c{at,m=1} =

{
ρt,m + γV̄m(1) for m ∈M+

t

ρt,m + λt,m + γV̄m(1) for all other m

Algorithm 1: Value iteration for finding V̄ (·)

1 Set V̄ (sss) = 0, for ∀sss ∈ S; S :=
{
vvv
∣∣vvv ∈ {0, 1}M+1

}
Input : γ < 1, pdf for ρρρ,λλλ and rrr
Output: V̄ (·)

2 while |V̄ i(sss)− V̄ i+1(sss)| < ε; ∀sss ∈ S do
3 for ∀sss ∈ S do
4 V̄ i+1(sss) =

E min
(ωωω,ααα) s.t. (C1)-(C5)

{
c(ααα,ωωω;ρρρ,λλλ) + γV̄ i(ααα)

}
5 end
6 i = i+ 1

7 end

whereM+
t =Mt ∪ {0,m′}. On the other hand, the cost of setting

at,m = 0 is just c{at,m=0} = γV̄m(0) for all m. Hence, to obtain
the optimal aaat one only needs to solve
(M + 1) separate tests of the form c{at,m=1} ≷ c{at,m=0}, one
per node. However, in most cases the assumption of V̄ (sss) =∑M
m=0 V̄m(sm) does not hold and, as a result, caching decisions are

coupled across nodes. In addition, while for a small number of users
(say 10 or less) both the estimation of V̄ (sss) and the computation
of the multiple decision rule is affordable, the computational bur-
den grows exponentially as M increases. As a result, in networks
with a large number of users, alternative schemes that try to impose
additional structure on V̄ (sss) are well motivated.

4. NUMERICAL TESTS

Here we run numerical simulations to assess the behavior of the de-
veloped caching policy. Due to space limitations, the focus will be
on the behavior of the CN, but the analysis can be generalized to
nodes with m ≥ 1 as well. The caching cost ρ0 is considered to be
uniformly drawn from [0, 2ρ̄0]. In addition, to model the fetching
costs over the entire network, we define the “effective” fetching cost
λeff as the cost of fetching from any node or cloud to the CN. λeff

is also considered to be uniformly drawn from [0, 2λ̄eff]. To assess
the CN’s policy, let us define the caching ratio as the ratio of the
number of caching decisions divided by the total number of deci-
sions. Fig 1a. depicts this ratio for different values of λ̄eff and ρ̄0,
for s0 = 1, and r0 = 1. The requests from the CN are assumed
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Fig. 1: Caching ratio versus (λ̄eff, ρ̄0) for different initial states s0,r0, and request probability pr; (a) s0 = 1, r0 = 1, and pr = 0.5; (b)
s0 = 0, r0 = 0, and pr = 0.5; and (c) s0 = 0, r0 = 0, and pr = 0.05. (d) Performance of DP versus myopic approach for different λ̄eff.
Performance of of proposed algorithm for different number of regular nodes.

to follow a Bernoulli distribution with pr = 0.5. The plot reveals a
non-symmetric cache-versus-fetch trade off curve for the CN’s pol-
icy, showing clearly how caching is preferred over fetching as the
fetching cost increases. For small enough caching costs, the ratio
goes to one (i.e., caching happens with probability 1). Changing the
initial state to s0 = 0, and r0 = 0 clearly affects the CN’s policy
as depicted in Fig. 1b. Now, even when caching is cheap, caching
decisions are rare (always below 20 %). Intuitively, this is due to the
fact that the file has not already been requested (r0 = 0) and, thus,
caching is only made to take advantage of low fetching costs. Fig. 1c
shows the caching ratio for s0 = 1, r0 = 1, and pr = 0.05. The
results confirm the relevance of the popularity of a content, since for
a wide range of caching costs fetching is always decided. Interest-
ingly, even when fetching is costly, the algorithm tends to fetch. The
reason is that, due to its low popularity, the file will have to remain
for a long time in the memory before being used, entailing a very
high aggregated caching cost.

We now compare the performance of the proposed method with
that of simpler schemes. Specifically, Fig. 1d reports the sum av-
erage cost of the proposed DP approach compared with that of a
myopic one. The myopic policy stores a file only if the file is re-
quested or is locally stored and the current caching cost is less than
the fetching one, i.e., ρ0,t < λeff,t. Here, ρ̄0 = 10, and as this re-
sult demonstrates the DP approach outperforms the myopic one as
the difference between average costs increases. This is expected be-
cause in the myopic approach the file will be stored whenever the
fetching is costly; however, the DP-based approach will also con-
sider the probability of the file being requested in future instants.

The next goal is to assess the benefits associated with distributed
caching by comparing the obtained cost with the cost incurred when
only the CN is equipped with a cache. To that end, Fig. 1e reports
the results for different number of caching nodes M ∈ {0, 1, 2, 4}.
The fetching costs over any link of the network are assumed to be
i.i.d, and uniformly drawn from [0− 2λ̄]. The caching costs are also
considered i.i.d and drawn from [0− 2ρ̄]. This plot depicts the sum
average cost incurred by the CN for ρ̄ = 62, two values of λ̄ (40
and 100), and different probabilities of requesting the files. Clearly,
increasing M allows the CN to meet the demands and, hence, re-
duces the aggregated cost. As expected, this reduction saturates as
M increases. All in all, the results corroborate the benefits of having
a system equipped with distributed caching infrastructure.

5. CONCLUSION

This paper illustrated how decomposition and dynamic program-
ming tools can be used to design optimal fetching-caching schemes
for a network of caches. In particular, we focused on an architecture
formed by a central controller connected to the cloud and to a set
of local nodes. At each time instant the controller received different
content requests and had to decide: i) if the content was going to be
downloaded from the cloud or from the local nodes (provided that it
was available locally), and ii) if some of the local nodes should cache
the content in their local memory for future use. Upon defining suit-
able fetching and caching costs (that varied across time, nodes and
contents), the problem was formulated as a dynamic program and its
optimal solution was obtained using different strategies to reduce the
associated computational burden.
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