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ABSTRACT

Consider a network with N nodes in d dimensions, and M over-
lapping subsets P1, · · · , PM (subnetworks). Assume that the nodes
in a given Pi are observed in a local coordinate system. We wish
to register the subnetworks using the knowledge of the observed
coordinates. More precisely, we want to compute the positions of
the N nodes in a global coordinate system, given P1, · · · , PM and
the corresponding local coordinates. Among other applications, this
problem arises in divide-and-conquer algorithms for localization of
adhoc sensor networks. The network is said to be uniquely regis-
trable if the global coordinates can be computed uniquely (up to
a rigid transform). Clearly, if the network is not uniquely registra-
ble, then any registration algorithm whatsoever is bound to fail. We
formulate a necessary and sufficient condition for uniquely registra-
bility in arbitrary dimensions. This condition leads to a randomized
polynomial-time test for unique registrability in arbitrary dimensions,
and a combinatorial linear-time test in two dimensions.

Index Terms— sensor network localization, registration, rigid
transform, uniqueness, rigidity theory.

1. INTRODUCTION

Consider an adhoc wireless network comprising of geographically
distributed sensor nodes with limited radio range. To make sense
of the data collected from the sensors, one requires the positions of
the individual sensors. It is often not feasible to equip each sensor
with a GPS following cost, power, and weight considerations. On the
other hand, we can estimate (e.g. using time-of-arrival) the distances
between sensors that are within the radio range of each other [1].
The problem of estimating the sensor locations from the available
inter-sensor distances is referred to as sensor network localization
(SNL) [1, 2]. Recently, scalable divide-and-conquer approaches for
SNL were proposed in [3, 4, 5], where the network is first subdivided
into smaller subnetworks that can be efficiently localized. The local-
ized subnetworks are then registered in a global coordinate system
to obtain the positions of the nodes in the original network. More
specifically, the authors in [5] proposed to efficiently localize each
subnetwork using classical multidimensional scaling (cMDS) [2, 6].
However, since the computation is based on the inter-node distances,
the coordinates returned by cMDS will in general be arbitrarily ro-
tated, flipped, and translated version of the ground-truth coordinates
(unless the subnetwork has sufficiently many GPS-enabled sensors in
it). The network is thus divided into multiple patches (following [5],
we call each subnetwork a patch), where each patch can be regarded
as constituting a local coordinate system. The local coordinates of
nodes in a patch are related to the original coordinates via a rigid
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Fig. 1. A network registration scenario. (a) Ground-truth network,
(b) Three local coordinate systems (patches), where xk,i denotes the
coordinate of the k-th node in the i-th patch (based on this informa-
tion, we wish to recover the ground-truth network), (c) Registered
network. Note that the (a) and (c) are related via a rigid transform,
which is the best we can hope to do with the given information.

transform (rotation, reflection and translation). The registration prob-
lem in question is to assign coordinates to every node in a global
coordinate system based on these patch-specific local coordinates.
Since the local coordinate systems are related to the ground-truth
coordinate system via unknown rigid transforms, solving the registra-
tion problem involves estimating these rigid transforms and “undoing”
them to obtain the global coordinates of the nodes (see Fig.1). We
note that similar registration problems arise in manifold learning,
computer vision, and molecular reconstruction [7, 8, 9, 10, 11]. A
fundamental question that one is faced with when coming up with an
algorithmic solution to this problem [5, 7] is that of uniqueness: Can
we uniquely identify the global coordinates which are consistent with
the observed local coordinates? Stated differently, can two different
assignments of global coordinates (not related via a rigid transform)
lead to the same observed local coordinates? We call the network
uniquely registrable if the global coordinates are guaranteed to be
unique. Additionally, can we come up with efficient tests to deter-
mine if the network is uniquely registrable? The practical significance
of uniquely registrability is clear: One cannot hope any algorithm
whatsoever to recover the ground-truth coordinates if the network is
not uniquely registrable.

In this paper, we address the above questions using results from
rigidity theory [12, 13]. Rigidity theory has been used in the literature
to address the uniqueness question associated with SNL problem [14].
Namely, can a network be uniquely localized (positioned) from the
available inter-sensor distances? Again, the uniqueness in question
is up to a rigid transform (which preserves inter-sensor distances).
For the registration problem in question, the authors in [7] proposed
a simple lateration criterion which guarantees unique registrability.
However, lateration cannot be tested efficiently, and is not a necessary
condition for unique registrability. For instance, while the network

4564978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



in Fig. 5 is not laterated, it is uniquely registrable. More recently, a
necessary condition for unique registrability was provided in [5].

In Section 2, we formalize the registration problem and the notion
of unique registrability. In Section 3, we review relevant definitions
and results from rigidity theory. In Section 4, we introduce the notion
of a body graph (introduced in [15] in the context of affine rigid-
ity), and establish an equivalence between unique registrability and
global rigidity of the body graph. As a corollary, we obtain the afore-
mentioned simple test for unique registrability of two-dimensional
networks. We conclude with a summary of the results in Section 5.
The technical proofs are deferred to Section 6 to improve readability.

2. PROBLEM STATEMENT

Suppose a network has N nodes in Rd which we label using1 S =
[1 : N ]. Let P1, · · · , PM be subsets of S, where we call each Pi

a patch. Let P = {P1, · · · , PM} be the collection of patches. A
natural way to represent the node-patch correspondence is using the
bipartite graph ΓC = (S,P, E), where (k, Pi) ∈ E if k ∈ Pi; with
a slight abuse of notation, we will use (k, i) in place of (k, Pi). We
will call ΓC the correspondence graph. Let x̄1, . . . , x̄N ∈ Rd be the
ground-truth coordinates of the N nodes. We associate with each
patch a local coordinate system. If (k, i) ∈ E , let xk,i ∈ Rd be the
local coordinates of node k in patch Pi. More precisely, if R̄i is the
rigid transform (defined with respect to the ground-truth coordinate
system) associated with patch Pi, then

x̄k = R̄i(xk,i), (k, i) ∈ E . (1)

We will refer to R̄i as the patch transform associated with Pi. We
are now ready to give a precise statement of the registration problem.

Problem. Given the correspondence graph ΓC = (S,P, E) and the
local coordinates {xk,i : (k, i) ∈ E}, determine X = (xk)Nk=1 and
the patch transforms R = (Ri)

M
i=1, such that

xk = Ri(xk,i), (k, i) ∈ E . (REG)

Obviously, the true global coordinates (x̄k)Nk=1 and the patch trans-
forms (R̄i)

M
i=1 satisfy REG. However, is this solution unique? Of

course, by uniqueness, we mean uniqueness up to congruence, i.e.,
any two solutions that are related through a rigid transform are con-
sidered identical. Note that a solution to REG has two components:
the global coordinates X and the patch transforms R. We will de-
fine uniqueness for each of these components. Suppose (X,R) is
a solution to REG. By uniqueness of global coordinates, we mean
that given any other solution (Y,T ) to REG, there exists a rigid
transformQ such that yk = Q(xk), k ∈ S . Similarly, by uniqueness
of patch transforms, we mean that there exists a rigid transform U
such that Ti = U ◦Ri, i ∈ [1 : M ], where ◦ denotes the composition
of transforms.

It is clear that uniqueness of patch transforms implies uniqueness
of global coordinates. That is, given solutions (X,R) and (Y,T )
to REG, if there exists a rigid transform U , such that Ti = U ◦
Ri, i ∈ [1 : M ], then there exists a rigid transform Q, such that
yk = Q(xk), k ∈ S. However, uniqueness of global coordinates
does not imply uniqueness of patch transforms. That is, given two
solutions (X,R) and (Y,T ) to REG, there may not exist a rigid
transform U , such that Ti = U ◦ Ri, i ∈ [1 : M ], even if there exists
a rigid transformQ, such that yk = Q(xk), k ∈ S . This is explained
with an example in Fig. 2.

1we use [m : n] to denote the set of integers {m, . . . , n}.
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Fig. 2. In this example, S = {1, 2, 3} and P = {P1, P2, P3},
where P1 = {1, 2}, P2 = {2, 3} and P3 = {1, 3}. The true global
coordinates are X̄ = ((0, 0), (1, 0), (1, 1)), and the patch transforms
are R̄ = (Id, Id, Id), where Id is the identity transform. Let T be a
reflection (along the dotted line marked r), followed by a translation
of 2 units (along the dotted ray marked with t). Let R = (Id, T , Id).
Notice that though both (X̄,R) and (X̄, R̄) are solutions of REG,
R is not congruent to R̄.

Notice that each patch has just two nodes in the example in Fig.
2. However, we know that a rigid transform in Rd is completely
specified by its action on a set of d + 1 non-degenerate points2. In
particular, if d+ 1 or more non-degenerate points are left fixed by a
rigid transform, then the transform must be identity. This leads to the
following proposition.

Proposition 1. If every patch contains at least d+ 1 non-degenerate
nodes, then uniqueness of global coordinates is equivalent to unique-
ness of patch transforms.

That is, if every patch contains at least d+1 non-degenerate nodes,
we need not distinguish between uniqueness of global coordinates
and uniqueness of patch transforms, and we can generally talk about
the uniqueness of solution to REG (and hence unique registrability of
the network) without any ambiguity.

3. RIGIDITY THEORY

Before moving on to our results, we recall some definitions and results
from rigidity theory [12, 13, 16, 17, 18]. Given a graph G = (V,E),
a d-dimensional configuration is a map p : V → Rd (which assigns
coordinates to vertices of G). The pair (G,p) is called a framework.
Throughout this paper, ‖·‖ denotes the Euclidean norm.

Definition 2 (Equivalent frameworks). Two frameworks (G,p) and
(G,q) are said to be equivalent, denoted by (G,p) ∼ (G,q), if
‖p(u)− p(v)‖ = ‖q(u)− q(v)‖, for every (u, v) ∈ E.

On the other hand, we require the distances between every pair
of vertices to be equal for congruent frameworks, which we define
next.

Definition 3 (Congruent frameworks). Two frameworks (G,p) and
(G,q) are said to be congruent, denoted by (G,p) ≡ (G,q), if
‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ for every u, v ∈ V .

In other words, congruent frameworks are related through a rigid
transform. Clearly, congruence implies equivalence, but the converse
is generally not true (see Fig. 3). This leads to the concept of rigidity.

Definition 4 (Globally rigidity). A framework (G,p) is globally
rigid if (G,q) ∼ (G,p) implies that (G,q) ≡ (G,p).

2A set of points in Rd is non-degenerate if their affine span is Rd.
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Fig. 3. The frameworks in (a) and (b) are equivalent because the
corresponding edge lengths are equal; however, they are not congruent
because the distance between vertices 2 and 4 is not equal in the two
frameworks. Thus, the framework in (a) is not globally rigid in R2.
On the other hand, it is not difficult to see that the framework is
locally rigid in R2, i.e., we cannot take (a) to (b) via a continuous
motion in R2 (the only way to do so is via a reflection about the line
1-3).

In other words, if (G,q) ∼ (G,p) and (G,p) is globally rigid,
then p and q must be related via a rigid transform. Local rigidity of a
framework, on the other hand, just means that the framework cannot
be continuously deformed into an equivalent framework.

Definition 5 (Locally rigidity). A framework (G,p) is locally rigid if
there exists ε > 0 such that any (G,q) ∼ (G,p) satisfying ‖p(v)−
q(v)‖ ≤ ε, v ∈ V , is congruent to (G,p).

In other words, (G,q) ∼ (G,p) implies that (G,q) ≡ (G,p),
for all q “sufficiently close” to p. Clearly, global rigidity implies
local rigidity, but the converse is not true (see Fig. 3).

A fundamental problem in rigidity theory is the following: Given
a d-dimensional framework (G,p), decide whether it is (locally or
globally) rigid in Rd. In general, the notions of local and global rigid-
ity depend not only on the graph, but also on the configuration (see
Fig. 4). This makes testing of rigidity computationally intractable
[19, 20]. A standard way of getting around this is to make an addi-
tional assumption of genericity. A framework (or configuration) is
said to be generic if there are no algebraic dependencies among the
coordinates of the configuration, i.e., the coordinates of the configu-
ration do not satisfy any non-trivial algebraic equation with rational
coefficients. For a given graph, the set of non-generic configurations
is a measure-zero set in the space of all possible configurations [21],
and hence almost every configuration is generic. The genericity as-
sumption makes local and global rigidity a property of the graph,
independent of any particular configuration. We record this important
fact as a proposition.
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Fig. 4. Frameworks (a) and (b) with the same underlying graph.
Framework (a) is not globally rigid because vertex 4 can be reflected
along the line 1-5-3, which results in an equivalent but non-congruent
framework. Such an edge-length-preserving reflection is not possible
in (b), which is globally rigid.

Proposition 6 ([12, 13, 17]). Global (respectively, local) rigidity is a
generic property, i.e., either all or none of the generic configurations
of a graph form a globally (respectively, locally) rigid framework.
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Fig. 5. In this example, S = [1 : 5] and P = {P1, P2, P3}, where
P1 = {1, 2, 3}, P2 = {1, 4, 5} and P3 = {2, 3, 4, 5}. (a) Visual-
ization of the node-patch correspondence, (b) Correspondence graph
ΓC = (S,P, E), (c) Body graph ΓB .

Thus, under the assumption of genericity, global rigidity becomes
a property of the graph, and we can talk of a graph being generically
globally rigid. This also tells us that there ought to be a characteriza-
tion of generic global rigidity solely in terms of the graph properties.
In fact, we have a complete combinatorial characterization of generic
global rigidity in two-dimensions (finding such a characterization for
three and higher dimensions is an open problem).

Theorem 7 ([18, 22]). A graph G is generically globally rigid in
R2 if and only if either G is a triangle, or G is 3-connected and
redundantly rigid in R2.

For completeness, we define the terms in Theorem 7. A graph is
said to be k-connected (or, k-vertex-connected) if it has more than k
vertices and any subgraph obtained after removing fewer than k ver-
tices remains connected [23]. A graph is said to be redundantly rigid
in Rd if it is generically locally rigid in Rd, and remains generically
locally rigid in Rd after removal of any edge.

4. UNIQUE REGISTRABILITY

We now formulate a necessary and sufficient condition for unique
registrability under the following assumptions:

(A1) Each patch contains at least d+ 1 non-degenerate nodes.

(A2) The nodes are in generic positions.

We briefly recall the rationale behind the assumptions. Under As-
sumption (A1), uniqueness of the global coordinates and uniqueness
of the patch transforms become equivalent, making unique regis-
trability a well-defined notion (see Proposition 1). Moreover, we
can easily force this assumption for divide-and-conquer algorithms
[24, 3, 5]. Assumption (A2) allows us to formulate conditions for
unique registrability for almost every problem instance based solely
on the combinatorial structure of the problem (see Proposition 6).

We now introduce the notion of a body graph, which will help
us tie unique registrability to rigidity theory. For a network with cor-
respondence graph ΓC = (S,P, E), consider a graph ΓB = (V,E),
where V = S, and E = {(k1, k2) : k1, k2 ∈ Pi for some i ∈ [1 :
M ]}. In other words, the nodes of ΓB are simply the nodes of ΓC ,and
we connect two nodes by an edge if they belong to a common patch
(see Fig. 5). We will call ΓB the body graph of ΓC . We derive the
term body graph from [15], where a similar notion was introduced in
the context of affine rigidity. Using the body graph, we can now state
our main result.

Theorem 8. Under Assumptions (A1) and (A2), the ground-truth
(X̄, R̄) is a unique solution of REG if and only if the body graph ΓB

is generically globally rigid.
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The import of Theorem 8 lies in the fact that generic global
rigidity in an arbitrary dimension can be tested using a randomized
polynomial-time algorithm [17]. Moreover, combining Theorem 8
with the combinatorial characterization of generic global rigidity in
Theorem 7, and using further results from rigidity theory, we get the
following characterization of unique registrability in two-dimensions
(we skip the proof due to space constraints).

Corollary 9. Under Assumptions (A1) and (A2), a network is
uniquely registrable in R2 if and only if ΓB is 3-connected.

The implication of Corollary 9 is that (assuming each patch has
at least 3 nodes) we need only test for 3-connectivity to establish
generic global rigidity of the body graph in R2. We need not perform
an additional check for redundant rigidity, as required by Theorem
7. As is well-known, 3-connectivity can be tested efficiently using
linear-time algorithms [23].

5. DISCUSSION

In this paper, we looked at the notion of unique registrability of a
network through the lens of rigidity theory. Given that there are two
families of unknowns inherent in the problem—the global coordinates
and the patch transforms—we first addressed the question as to what
uniqueness exactly means for the registration problem. We ended up
making a mild assumption of non-degeneracy that makes the notion
of uniqueness equivalent for both families of unknowns. We then
introduced the notion of body graph which allowed us to turn the
question of unique registrability into a question about graph rigidity.
Specifically, we concluded that unique registrability is equivalent to
global rigidity of the body graph. This opens up the possibility of
using non-trivial results from rigidity theory to efficiently test unique
registrability. For instance, in two dimensions, we only need to test
3-connectivity of the body graph to establish unique registrability.
Moreover, unique registrability can be verified in three or more di-
mensions simply by testing generic global rigidity of the body graph,
for which there exists a polynomial-time randomized algorithm [17].

6. APPENDIX: PROOF OF THEOREM 8

We will show that unique registrability is equivalent to global rigidity
of the body graph framework corresponding to the ground-truth. Then,
Assumption (A2) along with Proposition 6 allows us to remove the
dependence on the framework, thus proving the theorem.

We first make some definitions specialized to the registration
problem which allow us to express the question of uniqueness regis-
trability in a form amenable to a rigidity theoretic analysis.

Definition 10 (Node-patch framework). Given a correspondence
graph ΓC = (S,P, E), and a map x : S → Rd that assigns coordi-
nates to the nodes, the pair (ΓC ,x) is called a node-patch framework.

Definition 11 (Equivalence of node-patch frameworks). Two node-
patch frameworks (ΓC ,x) and (ΓC ,y) are said to be equivalent,
denoted by (ΓC ,x) ∼ (ΓC ,y), if x(k) = Qiy(k), (k, i) ∈ E ,
whereQi is a rigid transform.

Definition 12 (Congruence of node-patch frameworks). Two node-
patch frameworks (ΓC ,x) and (ΓC ,y) are said to be congruent,
denoted by (ΓC ,x) ≡ (ΓC ,y), if x(k) = Qy(k), k ∈ S, whereQ
is a rigid transform.

Given a solution (X,R) to REG, where X = (xk)Nk=1, R =
(Ri)

M
i=1, we will denote by x the map that assigns to node k the

coordinates xk, and say that (ΓC ,x) is the node-patch framework
corresponding to the solution (X,R).

Proposition 13. Let (X,R) and (Y,T ) be two solutions to REG.
Then the corresponding node-patch frameworks (ΓC ,x) and (ΓC ,y)
are equivalent.

Proof. Since (X,R) and (Y,T ) are solutions to REG, we have
that x(k) = Ri(xk,i) and y(k) = Ti(xk,i), k ∈ Pi, i ∈ [1 : M ].
Thus x(k) = Qiy(k), whereQi = Ri ◦ T −1

i .

Proposition 14. Let (X,R) be a solution to REG with the cor-
responding node-patch framework (ΓC ,x) and let y be such that
(ΓC ,y) ∼ (ΓC ,x). Then there exists some T for which (Y,T ) is a
solution of REG.

Proof. Indeed, (ΓC ,y) ∼ (ΓC ,x) implies that there exists rigid
transforms (Qi)

M
i=1 such that y(k) = Qix(k), (k, i) ∈ E . Since

(X,R) is a solution to REG, we have x(k) = Ri(xk,i), (k, i) ∈ E .
Thus, y(k) = (Qi◦Ri)(xk,i), which shows that (Y,T ) is a solution
to REG, where Y = (y(k))Nk=1 and T = (Qi ◦ Ri)

M
i=1.

Foregoing definitions and propositions allow us to express the con-
dition of unique registrability in a compact manner. Namely, let
(ΓC , x̄) be the ground-truth node-patch framework. Then, under
Assumption (A1), REG has a unique solution if and only if for any
node-patch framework (ΓC ,y) such that (ΓC ,y) ∼ (ΓC , x̄), we
have (ΓC ,y) ≡ (ΓC , x̄).

The next two propositions relate node-patch and body graph
frameworks.

Proposition 15. Two node-patch frameworks (ΓC ,x) and (ΓC ,y)
are equivalent (Definition 11) if and only if the body graph frame-
works (ΓB ,x) and (ΓB ,y) are equivalent (Definition 2).

Proof. Suppose (ΓC ,x) ∼ (ΓC ,y). Pick an arbitrary edge (k, l) ∈
E. From construction of ΓB , (k, l) ∈ E if and only if there is a
patch, say Pi, that contains both the nodes k and l. Since (ΓC ,x) ∼
(ΓC ,y), there exists a rigid transformQi such that x(k) = Qiy(k)
and x(l) = Qiy(l). This implies that x(k) − x(l) = Qi(y(k) −
y(l)), from where it follows that ‖x(k)− x(l)‖ = ‖y(k)− y(l))‖.
Thus, (ΓB ,x) ∼ (ΓB ,y).

Conversely, suppose (ΓB ,x) ∼ (ΓB ,y). Consider an arbitrary
patch Pi. Note that any subgraph of ΓB induced by a patch is a
clique. This, along with the assumption that (ΓB ,x) ∼ (ΓB ,y),
implies that ‖x(k) − x(l)‖ = ‖y(k) − y(l))‖ for every k, l ∈ Pi,
which, in turn, implies that there exists a rigid transformQi such that
x(v) = Qiy(v), v ∈ Pi. Thus, (ΓC ,x) ∼ (ΓC ,y).

Proposition 16. Two node-patch frameworks (ΓC ,x) and (ΓC ,y)
are congruent (Definition 12) if and only if the body graph frameworks
(ΓB ,x) and (ΓB ,y) are congruent (Definition 3).

The above result easily follows from Definitions 3 and 12. We are
now in a position to complete the proof of Theorem 8. Suppose REG
has a unique solution. We will show that the body graph framework
(ΓB , x̄) is globally rigid. Consider a framework (ΓB ,y) ∼ (ΓB , x̄).
Then, by Proposition 15, (ΓC ,y) ∼ (ΓC , x̄). By Proposition 14,
this implies that (ΓC ,y) correponds to a solution of REG. Now,
since REG has a unique solution, (ΓC ,y) ≡ (ΓC , x̄). Thus, by
Proposition 16, (ΓB ,y) ≡ (ΓB , x̄).

Conversely, suppose (ΓB , x̄) is globally rigid. Let (Y,T ) be
a solution to REG. By Proposition 13, (ΓC ,y) ∼ (ΓC , x̄). Hence,
by Proposition 15, (ΓB ,y) ∼ (ΓB , x̄). This, by global rigidity of
(ΓB , x̄), implies that (ΓB ,y) ≡ (ΓB , x̄). Finally, by Proposition 16,
(ΓC ,y) ≡ (ΓC , x̄).
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