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ABSTRACT
We derive and study a novel lower bound on the performance
of a partial zero forcing (PZF) receiver in the uplink of a cel-
lular network, where the mobile locations are modeled as a
homogeneous Poisson Point Process (HPPP). The PZF is a
suboptimal receiver. Yet, it is easy to analyze and in many
cases is close to optimal. Furthermore, the analysis of the
PZF gives more insight on the behavior of the network than
the optimal MMSE receiver (for example, we study the opti-
mal distance within which interference should be suppressed).
Unlike the existing analysis for the optimal MMSE receiver,
our novel bound holds also in the presence of thermal noise
and for finite number of antennas. This bound is easy to eval-
uate and proved to be asymptotically tight. Comparing to the
asymptotic result for MMSE, we also give the exact SINR
loss of PZF compared to MMSE.

Index Terms— 5G, MIMO, MMSE, ZF

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) cellular net-
works use a large number of antennas at the base-stations
(BSs) to increase the spatial diversity. This increased spatial
diversity can increase the network performance and improve
its reliability.

Massive MIMO networks were studied extensively in re-
cent years (see for example [1]–[4] and references therein).
Yet, the overall network performance has not been fully un-
derstood so far. To study the network performance, an analy-
sis must assume a statistical model for the nodes location.

The most popular model for analytical studies of two-
dimensional networks is the Homogenous Poisson Point Pro-
cess (HPPP). The HPPP has originally gained popularity for
the modeling of ad-hoc wireless networks (e.g., [5]–[8]), and
later was also used for the modeling of mobiles and even BSs
in cellular networks (e.g., [9]–[16]). This work is based on
modeling of the mobile locations as HPPP, which is a natu-
ral extension to the intuitive assumption that the mobiles are
uniformly distributed.

Jindal et al. [17] used the HPPP model to study the signal
to noise plus interference ratio (SINR) in the uplink of a cel-
lular network that utilizes a PZF receiver. They showed that
the SINR scales as (L/λ)α/2, where L is the number of BS
antennas, λ is the mobile density and α is the path-loss ex-
ponent. This scaling allowed them to prove that the network
performance can scale linearly with the number of antennas
(by keeping the user SINR fixed while increasing the mobile
density). This work focused on the asymptotic scaling, and
hence could not characterize the effect of thermal noise.

The asymptotic performance of the optimal MMSE re-
ceiver was derived by Govindasamy et al. [18] using large
matrix theory. Their result indeed matched the scaling of Jin-
dal et al., and also gave the exact multiplier of the SINR. But,
again, the asymptotic analysis can only characterize the per-
fromance for infinite number of antennas and without the ef-
fect of the noise.

In this work we extend the work of Jindal et al. on the
performance of PZF, and derive a lower bound on the user
rate that holds for finite number of antennas and also captures
the effect of the thermal noise.

The novel lower bound can characterize the network per-
formance in any scenario, and is proved to be asymptotically
tight. While the PZF receiver is sub-optimal, the new lower
bound has two distinct advantages over the MMSE analysis:
it enables the analysis of the performances in the presence of
thermal noise and it bounds the performance for any num-
ber of antennas. Furthermore, the bound derivation allows a
better understanding of the balance between interference can-
cellation and desired signal gain.

2. SYSTEM MODEL

We consider the uplink of a cellular network with single an-
tenna mobiles and L antennas per BS. The mobile locations
are modeled as an independent homogeneous Poisson point
processes (HPPPs), with a density of λ mobiles per unit area.

We analyze the performance of a typical mobile, termed
the probe mobile. Without loss of generality, the probe mo-
bile is located at the origin, and is labeled as mobile 0. The
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transmission of the probe mobile is considered as the desired
signal, while the transmissions of all other mobiles are con-
sidered as interference. The probe mobile is associated with
its nearest BS. As this BS is the only one that processes the
desired signal, we can focus on it and ignore all other BSs.
Thus, the analysis hereon will only consider this single BS.
For convenience, we also index all interfering mobiles accord-
ing to their distance from the BS. Thus, we have ri ≤ ri+1 for
i ≥ 1 where ri denotes the distance between the BS and the
i-th mobile. Note that r0 is the distance of the desired (probe)
mobile, which does not obey this indexing rule (i.e., r0 may
be larger then other distances in the network).

A received symbol at the BS is given by the L× 1 vector:

y = h0x0 +
∞∑

i=1

hixi + n (1)

where xi is the symbol transmitted from the i-th mobile with
zero-mean and unit variance, n is the thermal white-noise,
with i.i.d. complex normal elements of zero mean and vari-
ance of σ2 (n ∼ CN(0, σ2I)), and hi is the channel vector
of the i-th mobile. The channel vector is given by:

hi = r
−α/2
i gi (2)

where α > 2 is the path-loss exponent and gi ∼ CN (0, I) is
the vector of the rayleigh fading gains.

Allowing the use of matrices with infinite dimensions, the
channel can be described by the L ×∞ matrix

H = [h0,h1,h2, . . .]. (3)

and the received signal is

y = Hx + n (4)

where x = [x0, x1, x2, . . .]T is the vector of the symbols
transmitted by all mobiles.

Assuming a linear receiver with a weight vector w, the
signal to noise plus interference ratio (SINR) for the reception
of the desired signal is:

η =
|wHh0|2

∑

j 6=0

|wHhj |2 + ‖wH‖2
σ2

. (5)

The receive weight vector that maximizes the SINR is the
minimal mean square error (MMSE) receiver:

wMMSE =
(
HHH + σ2I

)−1
h0. (6)

Note that for the HPPP, the matrix HHH is well defined, even
though the matrix H has infinite dimensions.

The PZF receivers tries to balance between desired signal
gain and interference mitigation by choosing a cancellation
radius, D. Denoting the number of mobiles within this radius
by K, the PZF receive weight vector maximizes the signal to

noise ratio (SNR) subject to zeroing the interference to mo-
biles 1, . . . ,K . Thus, we note that rK ≤ D ≤ rK+1 and that
K has Poisson distribution with parameter λπD2. The PZF
weight vector is given by:

wPZF = HK

(
HH

KHK

)−1
e (7)

where HK , [h0,h1, . . . ,hK ] and e = [1, , 0, . . . , 0]T .
In the next section we derive a novel lower bound on the

average spectral efficiency of the PZF receiver. This bound
allows the characterization of the network throughput and the
evaluation of the cancellation radius that achieves the optimal
balance between interference and noise suppression. For con-
venience, we assume a bandwidth of 1Hz, and hence we use
the terms rate and spectral efficiency interchangeably. The
probe user rate is:

R = log2




1 +

|wHh0|2
∑

j>0

|wHhj |2 + ‖wH‖2
σ2




 (8)

and the average user rate is:

R̄ = E [R] (9)

where the expectation is taken with respect to the channel
fading and with respect to the mobile locations based on the
HPPP model.

3. PERFORMANCE ANALYSIS

3.1. PZF lower bound

Theorem 1. For a cancellation radius, D, the average rate of
a user with a PZF receiver, given its distance to the receiver
is lower bounded by:

E[R|r0 = r] ≥ RLB(r; D) (10)

where,

RLB(r; D) = E

[

log2

(

1 +
r−α (L − K − 1)+

2πλ
α−2D2−α + σ2

)]

(11)

K is a Poisson random variable with a mean of λπD2, and
(x)+ = max{x, 0}. This bound is tight when λπD2 � 1.

Proof. See Section 4.

This theorem allows a simple and convenient characteri-
zation of the network performance. Unlike the known results
for MMSE, this bound is valid for finite number of antennas,
and also bounds the performance in the presence of thermal
noise. A bound on the average user rate, R̄ can also be eas-
ily obtained from Theorem 1, by averaging over the user-BS
distance (which have an exponential distribution).
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However, the bound of Theorem 1 requires a choice of
the canceling radius, D. To make the bound even more use-
ful, the next corollary gives an approximation of the optimal
canceling radius, Dapx. Using Dapx in (11) gives a simpler
bound on the maximal network performance.

Corollary 1. Let Dopt = arg maxD RLB(r; D) be the opti-
mal canceling radius, D. A good approximation for Dopt is
the solution of:

Dα (α − 2) σ2 + απD2λ = (α − 2) (L − 1). (12)

Proof of Corollary 1. The proof is based on replacing K in
(11) by its expectation E[K] = πλD2 resulting with:

RLB(r; D) ≈ E

[

log2

(

1 +
r−α

(
L − πλD2 − 1

)

2πλ
α−2D2−α + σ2

)]

(13)

To find the optimal D, we evaluate the derivative with respect
to D and compare to zero, which results in (12).

In the following we will term the solution of (12) as Dapx

and define Rbnd(r) = RLB(r; Dapx). Note that E[R|r0 =
r] ≥ RLB(r; D) for any D and hence also E[R|r0 = r] ≥
Rbnd(r).

While Dapx is given only implicitly, as the solution of an
equation, we can gain much insight from it by considering the
interference limited regime and the noise limited regime. In
the interference limited regime, σ2 � 2πλ

α−2D2−α. Thus, we
can neglect the first term on the left hand side of (12) and get:

Dapx ≈

√
(α − 2) (L − 1)

απλ
. (14)

On the other hand, in the noise limited regime, σ2 �
2πλ
α−2D2−α, and we can neglect the second term on the left
hand side of (12), and we get:

Dapx ≈

(
L − 1

σ2

) 1
α

. (15)

Note that (14) and (15) give important insight on the net-
work as they tell us the radius of ‘important’ interferers. Here,
an ‘important’ interferer is an interferer that has higher power
than the noise, and hence should be canceled. Alternatively,
we can translate the same parameter to the average number
of ‘important’ interferers, given by πλD2

apx. For example, in
the interference limited case this average number of interfer-
ers is (α− 2)/α ∙ (L− 1), which is about half of the available
degrees of freedom for α = 4 but only one fifth of them for
α = 2.5.

3.2. Asymptotic analysis

When L grows to infinity, we can derive an even simpler ex-
pression. From (12) (or more conveniently from (14) and

(15)) we can see that when L grows to infinity, the optimal
D also grows to infinity. Thus, from Theorem 1, the bound is
tight. We can further simplify it by observing that

lim
D→∞

K

λπD2
= 1. (16)

Next we need to differentiae between two cases. if
σ2 > 0, then asymptotically, the mobile will always be in
the noise limited regime. Substituting (15) and (16) into
(11), The user rate in noise limited regime converges to:
limL→∞

E[R|r0=r]
RPZF,σ2>0(r)

where:

RPZF,σ2>0(r) = log2

(

1 +
r−αL

σ2

)

. (17)

which shows that even though we consider infinite number of
interfers, the PZF asymptotically achives the no-interference
bound.

The case that was studied more is the noise free case,
σ2 = 0. In this case, substituting (16) and (14), into (11)
gives limL→∞

E[R|r0=r]
RPZF,σ2=0(r)

where:

RPZF,σ2=0(r) = log2

(

1 +

(
(α − 2)(L − 1)

απλr2

)α/2
)

. (18)

As mentioned above, the scaling of the SNR with L was re-
ported already in [17]. The result above is more detailed as it
gives the exact asymptote of the SINR.

This result also allows a comparison to the performance
of the MMSE receiver for this case, which is given in [18]:

RMMSE,σ2=0(r) = log2

(

1 +

(
αL

2π2λr2
sin

2π

α

)α/2
)

. (19)

Both (18) and (19) show that the SINR scales as Lα/2. Thus,
we can compare their SINR (the term inside the logarithm)
and see that the ratio depends only on the the path loss expo-
nent:

SINRPZF,σ2=0(r)
SINRMMSE,σ2=0(r)

=

(
1 − 2

α
α
2π sin 2π

α

)α/2

. (20)

This asymptotic SINR loss is easy to evaluate and ranges be-
tween 0.82 for α = 2.5 and 0.6 for α = 4.

4. PROOF OF THEOREM 1

The bound is derived using the chain rule for expectations and
successive application of the Jensen inequality, using the con-
cavity of log2(1+1/x). Conditioning on Ψ = {r,w,h0,K}:

E[R|r0 = r] (21)

= E

[

E

[

log2

(

1 +
|wHh0|2

∑

j>K

|wHhj |2 + ‖w‖2
σ2

)∣∣
∣
∣
∣
Ψ

]]

≥ E

[

log2

(

1 +
|wHh0|2

E
[ ∑

j:rj>D

|wHhj |2
∣
∣
∣w
]

+ ‖w‖2
σ2

)]
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Fig. 1. Optimal and approximate cancellation radius as a
function of the noise variance for different numbers of BS
antennas. The path loss exponent is α = 4.

where the first line used the fact that the PZF receiver zeros
the interference from the nearest K users, and the inequality
used the Jensen inequality and the fact that for j > K the
channel vector hj is statistically independent of w and h0.

To evaluate the residual interference expectation in the de-
nominator we use the i.i.d. Gaussian distribution of gi in (2),
and note that given w, the product wHhj for any j > K has a
Gaussian distribution with zero mean and variance ‖w‖2r−α

j .
Thus, we have:

E
[ ∑

j:rj>D

|wHhj |
2
∣
∣
∣w
]

=
∥
∥wH

∥
∥2

∙ E




∑

j:rj>D

r−α
j





=
∥
∥wH

∥
∥2 2πλ

α − 2
D2−α (22)

where the second line uses the HPPP properties (see for ex-
ample [19]–[21]). Note that [20] also showed that the term in
the expectation actually converges to a constant when E[K]
is large enough. Thus, the Jensen inequality in (23) is tight
when λD2 � 1.

For the last stage of the proof, we note that given K,
2|wHh0|2/‖w‖2r−α

0 has a Chi square distribution with
2(L−K) degrees of freedom. Thus, E[‖w‖2/|wHh0|2|K] =
rα
0 /(L−K − 1). The proof is completed by substituting (22)

in (23), conditioning on K and using the Jensen inequality
again for log2(1 + 1/x):

E[R|r0 = r] ≥ E

[

E

[

log2

(

1 +
|wHh0|2/ ‖w‖2

2πλ
α−2D2−α + σ2

)∣∣
∣
∣
∣
K

]]

which leads to (11) and completes the proof.
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Fig. 2. Average user rates and bounds for PZF and MMSE
receivers (α = 4).

5. NUMERICAL EXAMPLES

In this section we demonstrate the usefulness of our novel
bound. First, we show that the approximation of (14) is quite
good even when the number of antennas is as low as 10. Fig.
1 depicts the approximate canceling radius of (14) (marked
as Dapx), and the actual optimal cancelation radius, obtained
from brute force optimization of the simulation results. As
can be seen, the approximation is good both in the presence
and in the absence of noise.

Fig. 2 depict the network performance and bounds vs.
noise variance for L = 10 and L = 50 BS antennas. The
figure shows that the MMSE asymptotic expression gives
a good approximation even for 10 antennas (although this
wasn’t proved analytically). On the other hand, the novel
PZF bound is proved to be a lower bound for all scenarios.
This bound is up to 12% from the actual performance at
L = 10 and only up to 1.5% for L = 50. Note that when the
noise becomes significant, the novel lower bound still gives
a good characterization of the performance, which cannot be
obtained from the asymptotic MMSE expression.

6. CONCLUSIONS

We presented a novel lower bound on the performance of the
PZF receiver in the uplink of a cellular network. The novel
bound is easy to evaluate and can characterize the network
performance at any network scenario, including finite number
of antennas and in the presence of thermal noise. We also
derived an asymptotic expression for the SINR loss of PZF
compared to MMSE receiver. This loss ranges between 0.82
at α = 2.5 and 0.6 at α = 4.
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