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ABSTRACT
We study the performance of a convex data detection method in large
multiple-input multiple-output (MIMO) systems. The goal is to re-
cover an n-dimensional complex signal whose entries are from an
arbitrary constellation D ⊂ C, using m noisy linear measurements.
Since the Maximum Likelihood (ML) estimation involves minimiz-
ing a loss function over the discrete set Dn, it becomes computa-
tionally intractable for large n. One approach is to relax D to a
convex set and to utilize convex programing to solve the problem
and then to map the answer to the closest point in the set D. We as-
sume an i.i.d. complex Gaussian channel matrix and derive precise
expressions for the symbol error probability of the proposed convex
method in the limit of m,n → ∞. Prior work was only able to do
so for real valued constellations such as BPSK and PAM. The main
contribution of this paper is to extend the results to complex valued
constellations. In particular, we use our main theorem to calculate
the performance of the complex algorithm for PSK and QAM con-
stellations. In addition, we introduce a closed-form formula for the
symbol error probability in the high-SNR regime and determine the
minimum number of measurements m required for consistent signal
recovery.

1. INTRODUCTION

We consider the problem of recovering a transmit signal, x0 ∈ Dn,
formm (noisy) linear observations of the form y = Ax0+z, where
D ⊂ C denotes the discrete transmit constellation, and z ∈ Cm is
the noise vector. This problem has a pivotal role in signal detec-
tion in multiple-input, multiple-output (MIMO) communication sys-
tems [1–3], where A ∈ Cm×n, often referred to as the channel state
information, is a known matrix. In such settings, m and n corre-
spond to the number of transmit and receive antennas, respectively.

The Maximum Likelihood(ML) estimator is the desirable theo-
retical solution for this problem. There has been numerous studies
to investigate algorithms that can generate exact or approximate so-
lutions for this problem. Due to the combinatorial nature [4] of the
problem, exact algorithms (e.g. sphere decoding [5]) are compu-
tationally prohibitive, especially in a very large system (e.g. mas-
sive MIMO) [6]. Therefore, various heuristics have been proposed
and used in practice [7, 8] to approximate the ML solution. Despite
tractable computational complexity, the precise performance analy-
sis of such methods are often challenging.

Due to the practical advantages of convex algorithms, one con-
ventional approach to solve this problem is to relax the discrete set
D to a continuous convex set S and utilize convex programming to
search over S instead of D [9–11]. The performance of this method
for data recovery has been investigated in the works of [3,12,13] for
the real valued constellations, specifically, BPSK and PAM when
the channel matrix is Gaussian. To do so, Thrampoulidis et. al. [12]
utilized a framework that they had developed, known as the CGMT
framework [14, 15]. The CGMT framework has been successfully
applied to analyze the performance in a number of other applications

including analysis of regularized M- estimators [14], and PhaseMax
in phase retrieval [16–18]. Unfortunately, The CGMT framework
can not be readily extended to the complex settings (which indeed is
the desirable case in many practical applications).

The major result of this paper is to introduce a new comparison
lemma for complex Gaussian processes to study the convex detection
problem for complex constellations. In particular, we precisely char-
acterize the symbol error rate performance of the convex method,
for a general constellation D and a convex relaxation S. Our the-
orem also allows us to derive the necessary and sufficient number
of antennas, m, required for data recovery in the high-SNR regime
which enables us to precisely characterize the phase-transition re-
gions. Through our analysis, we can further observe the relationship
between the choice of the convex relaxation with its corresponding
phase transition. As an example, we analyze the loss in performance
when choosing a relaxation that is easier to implement in a convex
program for the case of PSK modulation.

2. PROBLEM SETUP

Notations We gather here the basic notations that are used through-
out this paper. We reserve the letter j for the complex unit. For a
complex scalar x ∈ C, xRe and xIm correspond to the real are imag-
inary parts of x, respectively and |x| =

√
x2Re + x2Im. N (µ, σ2) de-

notes real Gaussian distribution with mean µ and variance σ2. Sim-
ilarly,NC(µ, σ

2) refers to a complex Gaussian distribution with real
and imaginary parts drawn independently from N (µRe, σ

2/2) and
N (µIm, σ

2/2), respectively. X ∼ pX implies that the random vari-
able X has a density pX . We reserve the letters G and H to denote
(scalar) standard normal random variables. Similarly,HC is reserved
to denote a complex NC(0, 2) random variable. The bold lower let-
ters are reserved for vectors and for a vector v, vi denotes its ith

entry. Finally, for a convex set S ⊂ C, the projection and distance
functions with respect to S are defined as

PS(x) := argmin
y∈S
‖x− y‖

DS(x) := min
y∈S
‖x− y‖. (1)

Setup Our goal is to recover an n-dimensional vector x0 ∈ Cn
where the entries of x0 are independenty drawn from the discrete
set D ⊂ C with distribution x0,i ∼ pX . The set D defines the
modulation used for data transmission (e.g. QAM, PSK, etc.). For
this purpose, we are given the noisy multiple-input multiple-output
(MIMO) relation of the form

y = Ax+ z ∈ Cm, (2)

where A ∈ Cm×n is the known MIMO channel matrix with i.i.d.
entries drawn from NC(0,

1
n
) and z ∈ Cm is the unknown noise

vector with i.i.d. random complex GaussianNC(0, σ
2) entries.
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Estimator The ML estimator of x0 in this scenario is

x̂ = arg min
x∈Dn

1

2m
‖y −Ax‖2. (3)

Since solving (3) is computationally intractable, a variety of heuris-
tic methods, such as zero-forcing, MMSE, decision-feedback, have
been proposed. In this paper, we make use of convex programming
to estimate x0. In the first step, we relax D to a convex set S and
minimize the objective function of (3) over this relaxed convex set,

x̃ = arg min
x∈Sn

1

2m
‖y −Ax‖2. (4)

Next, we map each entry of x̃ to the closest point in D to build our
final estimation of x0,

x̂i = argmin
x∈D
|x− x̃i|, i = 1, . . . , n. (5)

We refer to this method as the Convex Decoder Algorithm (CDA).
In this paper, we will precisely analyze the performance of the CDA
as a function of the problem parameters such as σ, m/n, D and S.
Note that the performance of CDA depends on the constellation D
and the way we relax it to the convex set S. Later in Section 3.1,
we observe the impact of choosing two different relaxations on the
performance of CDA and its phase-transition regions with the help
of our main theorem.
Symbol error probability We characterize the performance of CDA
in terms of the symbol error probability, defined as the expected
value of the Symbol Error Rate (SER) where,

SER :=
1

n

n∑
i=1

1x̂i 6=x0,i ,

Pe := E[SER] = 1

n

n∑
i=1

P
(
x̂i 6= (x0)i

)
. (6)

Here x̂ is the output of CDA in (5), 1E is the indicator of the event E
and the probability P(·) is over the randomness of A, z and x0. We
introduce the notation Sx for x ∈ D, as the set of all points in S that
will be mapped to x in (5). Equivalently,

Sx := {x′ ∈ S : ∀y ∈ D, |x′ − x| < |x′ − y|}. (7)

This notation helps us interpret our main theorem more clearly. Us-
ing this notation, we can rewrite the symbol error probability defined
in (6) as

Pe =
1

n

n∑
i=1

P
(
x̃i /∈ S(x0)i

)
, (8)

where x̃ is the minimizer of (4).
Assumptions We impose two mild assumptions on the problem.
First, we assume that the entries of x0 are i.i.d. random variables
with x0,i ∼ px and also Px(r1+jr2) = Px(r2+jr1), ∀r1, r2 ∈ R.
Second, we want the convex set to be symmetric in the sense that if
(r1 + jr2) ∈ S, then also (r2 + jr1) ∈ S.

2.1. Modulations
Using our main theorem, we can precisely analyze the SER of the
CDA in terms of the SER for a constellation D which we relax to
an arbitrary convex set S. For a better understanding of the theo-
rem and to show how to apply it to different schemes, we will work
with two conventional modulations; Phase-Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM).
N -PSK Constellation: In the N -PSK constellation, each entry of

x0 is randomly drawn fromD =
{
e
j2π
N
i : i = 0, . . . , N − 1

}
. The

entries of D are distributed over the unit circle in the complex space
and therefore the Signal to Noise Ratio (SNR) will be 1/σ2. Next,
we need an appropriate convex relaxation ofD for CDA. We suggest
two candidates for this purpose and compare their performances later
in Section 3.1. In one which we will refer to as the Circular Relax-
ation (CR), we choose the set S(CR) = {x ∈ C : |x| ≤ 1} as the
convex set in (4). The simple structure of S(CR) makes its imple-
mentation easier in the convex program (4). In another scenario, we
consider the convex hull of D as the relaxed set S and refer to it as
Convex Hull Relaxation (CHR). Thus, S(CHR) = Conv(D) will be
used in (4) which might be harder to implement compared to S(CR).
But we will show that since (CHR) is a tighter relaxation, its corre-
sponding CDA performs better in terms of SER.
N2-QAM Constellation: We also briefly talk about the N2-QAM
modulation where

D =

{
(α+ jβ)− N − 1

2
(1 + j) : α, β ∈ {0, . . . , N − 1}

}
.

Under this constellation the SNR will be N(N2−1)

6σ2 . The relaxation
that is often used for this modulation is known as the Box Relaxation
(BR) [12] which is

S =

{
(x+ jy) ∈ C : |x| ≤ N − 1

2
, |y| ≤ N − 1

2

}
(9)

Using our main theorem, we can calculate the SER of CDA under
box relaxation and rederive the results of [3, 12].

3. MAIN RESULT

Our main result explicitly characterizes the limiting behavior of the
symbol error rate of the convex decoder algorithm, under the high
dimensional regime where n,m → ∞ with a constant ratio δ :=
m/n.

Theorem 3.1. (SER analysis of CDA) Let SER denote the symbol
error rate of the Convex Decoder Algorithm (CDA), for random sig-
nal x0 ∈ D with entries drawn independently from the distribution
pX . Let S be a convex relaxation of D and S and pX satisfy the
assumptions in Section 2. Fix SNR and δ = m/n and consider the
optimization

min
τ>0

δ − 1

2τδ
+
σ2τ

4
+
τ

4
E[D2

S(X +
HC

τ
√
δ
)]. (10)

If (10) has a unique answer τ∗, then in the limit of m,n→∞

lim
m,n→∞

Pe = P
(
PS(X +

HC

τ∗
√
δ
) /∈ SX

)
. (11)

The expected value and probability in (10) and (11) are over
X ∼ pX and HC ∼ NC(0, 2), respectively.

Theorem 3.1 provides a formula to calculate the SER of the con-
vex decoder, under a general constellation in the high dimensional
regime.

Remark 1. (Computing τ∗) The objective function in (10) is convex
and only involves one scalar variable. Thus, τ∗ can, in principle,
be efficiently numerically computed. It can be shown that τ∗ is the
minimizer of (10) if and only if it is the answer to the corresponding
first-order optimality condition,

1

τ∗2
=

1

2

(
σ2 + E

[∣∣∣∣X − PS(X +
HC

τ∗
√
δ
)

∣∣∣∣2
])

. (12)
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Fig. 1: SER Performance of the Circular Relaxation (CR) for 16-
PSK: Pe as a function of SNR for the two cases where δ = .8 and
δ = 1. The theoretical prediction follows from Theorem 3.1 and
the high-SNR analysis comes from Section 3.1. For the simulation,
we used signals of size n = 128 with each entry chosen randomly
uniform from the set SPSK =

{
e
jπ
8
i : i = 0, . . . , 15

}
. The data

are averages over 30 independent realizations of the channel matrix
and the noise vector.

Although, this does not provide us with a closed form formula to
calculate τ∗, in all our simulations a fixed-point iterative method
converges to τ∗ over a handful of iterations. It can be also shown
that (12) has a unique solution if δ > δ∗ for some δ∗ ∈ (0, 1) which
depends on S.

Next, we apply Theorem 3.1 to the N -PSK and N2-QAM
modulations introduced in Section 2.1 to calculate their correspond-
ing symbol error probabilities and phase-transition thresholds in
the high-SNR regime. Figures 1 and 2 verify the accuracy of the
prediction of Theorem 3.1 for 16-PSK and 16-QAM modulations,
respectively. Note that although the theorem requires n → ∞ , the
prediction is already accurate for n = 128. In these figures, we have
also plotted the high-SNR expressions for SER that we derive in the
next Section for both modulations. Interestingly, we observe that
this high-SNR expression gives us a good enough approximation of
the exact value of SER, even for small practical values of SNR.

3.1. N -PSK Constellation

Under the N -PSK setup, the set D is defined in Section 2.1. We in-
vestigate the error performance of the convex decoder algorithm for
two different convex relaxations for the set D; Circular Relaxation
(CR) and Convex-Hull Relaxation (CHR). The effect of using dif-
ferent relaxations shows up in the projection function in equations
(12) and (11). Define S(SR) = {c ∈ C : |c| ≤ 1} as the circular re-
laxation of D. The projection function on this set has the following
form,

PS(CR)(x) =

{
x if |x| ≤ 1

x/|x| otherwise.
(13)

Therefore, τ∗ can be efficiently calculated using a fixed-point itera-
tive method to solve (12). Furthermore, due to the symmetric nature
of the N -PSK constellation, the probability of error for each symbol
in D can be derived in the following closed form,

Pe = P
(
|G| > tan(

π

N
)(H + τ∗

√
δ)
)
, (14)

Fig. 2: SER Performance of the Box Relaxation for 16-QAM: Pe
as a function of SNR for the two cases where δ = .8 and δ = 1.
The theoretical prediction follows from Theorem 3.1 and the high-
SNR analysis comes from Section 3.2. For the simulation, we used
signals of size n = 128 with each entry chosen uniformly at random
in the set SQAM = {±1,±3}2 . The data are averages over 30
independent realizations of the channel matrix and the noise vector.

where G and H are i.i.d. N (0, 1).

High-SNR Analysis Let S(CR) and S(CHR) denote the circular
relaxation and convex-hull relaxation of the set D. It can be shown
that for SNR � 1, τ∗ grows large proportional to

√
SNR. As a

consequence, the last term in (10) can be approximated by 1
8τδ

and
N+4
8Nτδ

for the cases of (CR) and (CHR), respectively. This results

in τ∗ =
√

2SNR(δ−3/4)
δ

for (CR) and τ∗ =
√

2SNR(δ−3/4+1/N)
δ

for
(CHR). Putting these values for τ∗ in (14) yields their corresponding
high-SNR symbol error probabilities,

P (CR)
e = P

(
|G| > tan(

π

N
)(H +

√
2SNR · (δ − 3/4))

)
, (15)

P (CHR)
e = P

(
|G| > tan(

π

N
)(H +

√
2SNR · (δ − 3/4 + 1/N))

)
.

(16)

The difference between phase-transitions of these two cases can
be observed from equations (15) and (16). While for (CR) we need
δ > 3/4 for consistent data recovery, this threshold changes to
δ > (3/4 − 1/N) for (CHR). This essentially means that n/N
additional MIMO receivers is required at the expense of having a
simpler convex set. This verifies the fact that while the optimization
over S(CR) might be done faster over the Circular Relaxation due to
its simple structure, we need more measurements (or higher SNR)
to get the same performance for (CR) compared to (CHR). In other
words, the performance of (CR) is 10 log10(

δ−3/4+1/n
δ−3/4

) off that of
(CHR).

Comparison to the matched filter bound. The matched filter
is the ideal impractical case where we assume to have the first n− 1
entries of x0 and we want to recover the last entry. We compare the
symbol error probability of this scenario, referred to as the Matched
Filter Bound (MFB), with the Pe of the convex decoder that can be
derived from Theorem 3.1. The matched filter bound corresponds
to the probability of error in detecting X ∈ D from ỹ = Xa + z,
where a ∈ Cn with Gaussian entries drawn fromNC(0,

1√
n
), and z

is the noise vector with entries NC(0, σ
2). Then, the probability of

error of the ML estimator of X in N -PSK will be

4556



P
(
|G| > tan(

π

N
)(H +

√
2SNR · δ)

)
. (17)

Comparison of (15) with (17) shows that in the high-SNR regime
the performance of (CR) is 10 log10(

δ
δ−3/4

)dB off from the (MFB).
In particular, in the square case (δ = 1), where the number of re-
ceive and transmit antennas are the same, the (CR) is 6dB off the
(MFB). Besides, as δ → ∞ (meaning that the number of antennas
grows largecompared to users), the performance of (CR) and (CHR)
approaches (MFB).

3.2. N2-QAM Constellation

In N2-QAM, each entry of x0 is randomly chosen from the set D
defined in Section 2.1 with distribution pX . The conventional relax-
ation for this constellation is the Box Relaxation (BR) [9–11] defined
in (9). Similar to the previous section, In order to use Theorem 3.1,
we need to form the projection function to S in (1) which is straight-
forward for a box set. Once τ∗ is obtained using equation (12) (or
recruiting other methods to solve (10)), we shall use (11) to calcu-
late Pe of N2-QAM constellation. Here, unlike the N -PSK case,
the probability of error in the recovery is not the same for different
symbols in D.

Using the same set of arguments in Section 3.1, it can be shown
that in the high-SNR regime, the last term in the objective function
of (10) approaches 1

2τδN
. Therefore the answer to the minimization

problem will be τ∗ =
√

2SNR(δ−(N−1)/N)
δ

. This implies that δ? =
N−1
N

is the recovery threshold for the Box Relaxation of the set D.
It can also be shown that for δ > δ?, the problem (10) is strictly
convex and therefore has a unique solution. This is consistent with
the result of [3] which proves the same phase-transition region for
the Box Relaxation.

4. PROOF OUTLINE

In this part we introduce the main ideas used in the proof of The-
orem 3.1. The goal is to analyze the performance of the following
optimization problem:

x̂ = arg min
x∈Sn

1

2m
||y −Ax||2 (18)

We rewrite (18) by changing variable to vector w = x− x0

ŵ = arg min
w∈Sn−x0

1

2m
||z−Aw|| (19)

Now let Ã = [AR,AI ;−AI ,AR] ∈ R2m×2n and z′ = [zR; zI ] ∈
R2m, where AR and zR (AI and zI ) are the real (imaginary) parts
of A and z, respectively. Now (19) can be written as

w? = arg min
w∈R2n

wi+jwn+i∈S−(x0)i

1

4m
||z′ − 1√

2n
Ã ·w||2 . (20)

This optimization is difficult to analyze and current methods for
asymptotic analysis of such optimizations fail here, because of the
dependence between the entries of Ã. The main step of our proof
is to show that in the asymptotic regime when m,n =→ ∞ with
m/n = δ, the SER in the optimization (19) converges to the one in
the following.

w? = arg min
w∈R2n

wi+jwn+i∈S−(x0)i

1

4m
||z′ − 1√

2n
B ·w||2 . (21)

Here, z′ ∈ R2m is a vector with i.i.d. N (0, σ2/2) entries and
B ∈ R(2m)×(2n) is a matrix whose entries are independently drawn
from N (0, 1). To do so, we first show this in the case that both the
objective functions have an extra strongly convex term ε‖w‖2/2.
Under this scenario, we can utilize the Lindeberg method as in [19].
The idea is to replace the rows of Ã to B in m steps. In each step,
we replace the rows i and n+ i in the Ã (that are independent from
the rest of Ã) with the the rows i and i + n in the B. We can
show that each step changes the SER on the order of O(n5/4). So
as n → ∞, the SER doesn’t change. Next, we use the RIP condi-
tion for Gaussian matrices to show that removing the extra ε‖w‖2/2
term in the optimization does not affect the SER for small enough ε
(See Sections 3.1 and 3.3.2 in the appendix of [20] for more details
regarding these two steps). Then, we just need to analyze perfor-
mance of (21) instead of (19). For the rest of the proof, we apply the
CGMT framework and the same tools as in [14](Section 5.3). The
idea is to rewrite (21) as the following min-max problem,

min
wi+jwn+i∈S−(x0)i

max
u∈R2m

1√
2m

utz′− 1

2
√
mn

utBw−1

2
||u||2 ,

(22)
This enables us to apply the CGMT which associates with (22), the
following simplified optimization whose analysis provides us with
the desired properties of the initial optimization.

min
wi+jwn+i∈S−(x0)i

max
u

1√
2m

utz′ − 1

2
||u||2

+
1

2
√
mn

(gtu||w||+ htw||u||) ,

where g ∈ R2m and h ∈ R2n have i.i.d. standard Gaussian entries.
It can be shown that the optimization over u results in

min
wi+jwn+i∈S−(x0)i

1√
2m
||z′ + ||w||√

2n
g||+ 1

2
√
mn

htw . (23)

Using
√
x = minτ>0

1
2τ

+ τx
2

, optimization (23) can be written as

min
τ>0

1

2τ
+
τ‖z′‖2

4m
+ min

wi+jwn+i∈S−(x0)i

τ ||w||2‖g‖2

8nm
+

1

2
√
mn

htw.

(24)
Using dimension reduction techniques, we can show that from the
following deterministic optimization, we can tightly infer the prop-
erties of (24).

min
τ>0

1

2τ
+
τσ2

4
+ min

wi+jwn+i∈S−(x0)i

τ ||w||2

4n
+

1

2
√
mn

htw.

(25)
A completion of squares in the minimization over w, the weak law
of large numbers and convex techniques (See Section A.3 in [21] to
see how WLLN can be applied here) results in the final deterministic
optimization

min
τ>0

δ − 1

2τδ
+
σ2τ

4
+
τ

4
E[D2

S(X +
Hc

τ
√
δ
)]. (26)

Besides, the optimal w can be obtained by putting the optimizer of
(26) in the minimization over w in the last term of the (25). Similar
to the proof of [12](section 3), SER of w∗ derived here is equal to
the one from (19) which is

Pe → P
(
PS(X +

HC

τ∗
√
δ
) /∈ SX

)
(27)
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