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ABSTRACT

The end-to-end learning of Simultaneous Wireless Information and
Power Transfer (SWIPT) over a noisy channel is studied. Adopting
a nonlinear model for the Energy Harvester (EH) at the receiver, a
joint optimization of the transmitter and the receiver is implemented
using Neural Network (NN)-based autoencoders. Modulation con-
stellations for different levels of “power” and “information rate” de-
mands at the receiver are obtained. The numerically optimized signal
constellations are inline with the previous theoretical results. In par-
ticular, it is observed that as the receiver power demand increases,
all but one of the modulation symbols are concentrated around the
origin and the other symbol is shot away from the origin.

Index Terms— SWIPT, Neural Network, Modulation design,
Autoencoder, Additive Noise

1. INTRODUCTION

Radio Frequency (RF) signals are capable of bearing information as
well as power. The transferred power can be utilized for energizing
low power devices, such as wireless sensors and Internet-of-Things
(IoT) devices. This along with the growth of low energy devices,
has created a significant attention towards the study of Simultaneous
Wireless Information and Power Transfer (SWIPT) systems [1]. The
fundamental tradeoff between the information rate and the delivered
power was first studied in [2] by Varshney, where a characterization
of the capacity-power function for a point-to-point discrete memo-
ryless channel is obtained.

In order to design efficient SWIPT architectures, it is crucial to
model the Energy Harvester (EH) with a high level of accuracy. The
EH consists of a rectenna, which is composed of an antenna followed
by a rectifier. The rectifier is used to convert the RF power into DC
current in order to charge devices. Although most of the results in
the literature adopt a linear characteristic function for the rectifier, in
practice, due to the presence of a diode in the rectifier, the output of
the EH is a nonlinear function of its input [3, 4].

Due to the nonlinearity of the diode characteristic function, the
RF-to-DC conversion efficiency of the EH is highly dependent on
the power as well as the shape of the waveform [3, 4, 5]. Obser-
vations based on experimental results reveal that signals with high
Peak-to-Average Power Ratio (PAPR) result in high delivered DC
power compared to other signals [4]. Motivated by this observation,
in [3], an analytical model for the rectenna is introduced and a joint
optimization over the phase and amplitude of a deterministic multi-
sine signal is studied. It is concluded that unlike the linear EH model
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that favours a single-carrier transmission, a nonlinear model favours
a multicarrier transmission.

In SWIPT systems, the goal is to maximize the DC power as
well as the information rate, which is commonly referred as maxi-
mizing the Rate-Power (RP) region. Unlike most of the SWIPT sys-
tems with the linear model assumption for EH, for SWIPT systems
with nonlinear EH, there exists a tradeoff between the rate and deliv-
ered power [1]. Due to the presence of nonlinear components in EH,
obtaining the exact optimal tradeoff analytically has so far been un-
successful. However, after making some simplifying assumptions,
some interesting results have been derived in [6, 7, 8, 9]. In particu-
lar, in multicarrier transmission, it is shown in [6] that nonzero mean
Gaussian input distributions lead to an enlarged RP region compared
to Circularly Symmetric Complex Gaussian (CSCG) input distribu-
tions. In single carrier transmissions over Additive White Gaussian
Noise (AWGN) channel, in [8, 9], it is shown that (under nonlinear-
ity assumption for the EH) for circular symmetric inputs, the capac-
ity achieving input distribution is discrete in amplitude with a finite
number of mass-points and with a uniformly distributed independent
phase. This is in contrast to the linear model assumption of the EH,
where there is no tradeoff between the information and power (i.e.,
from system design perspective the two goals are aligned), and the
optimal inputs are Gaussian distributed [1].

While designing SWIPT signals and systems (under nonlinear
assumptions for the EH) using analytical tools seems extremely
cumbersome, learning based methods reveal a promising alterna-
tive to tackle the aforementioned problems. In fact, learning based
methods, and particularly, autoencoders have recently shown re-
markable results in communications, achieving or even surpassing
the performance of state-of-the-art algorithms [10, 11]. The ad-
vantage of learning based methods versus analytical algorithms lies
in their ability to extract complex features from the training data,
and the fact that their model parameters can be trained efficiently
on large datasets via backpropagation. The learning based meth-
ods learn the statistical characteristics from a large training dataset,
and optimize the algorithm accordingly, without obtaining explicit
analytical results. At the same time, the potential of learning has
also been capitalized by researchers to design novel and efficient
coding and modulation techniques in communications. In particular,
the similarities between the autoencoder architecture and the digital
communication systems have motivated significant research efforts
in the direction of modelling end-to-end communication systems
using the autoencoder architecture [10, 11]. Some examples of such
designs include decoder design for existing channel codes [12],
blind channel equalization [13], learning physical layer signal rep-
resentation for SISO [10] and MIMO systems [14], OFDM systems
[15, 16].

In this work, we leverage learning based methods in SWIPT. We
consider signal modulation design for a point-to-point SWIPT over
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Fig. 1. Point-to-point SWIPT system model with an additive noise
channel. The receiver is assumed to be capable of capturing the
power and decoding the information of the received signal.

a noisy channel. In particular, we consider the SWIPT system as an
autoencoder structure, where the transmitter and receiver are consid-
ered as multi-layer Neural Networks (NN). The results are obtained
by optimizing the transmitter and receiver jointly over a large train-
ing data. The numerical optimization reveals the following: First,
as the demand for power at the receiver increases, one of the chan-
nel input symbols (namely, the power symbol) is getting away from
zero with the other symbols (namely, the information symbols) dis-
tributed symmetrically around the origin. Second, for higher power
delivery demands, the number of channel information symbols de-
creases, i.e., the transmitter sacrifices some of the information sym-
bols by mapping them to the same channel input (usually zero sym-
bol). Third, for power delivery purposes, the DC power increases
with the number of channel input symbols, and all the symbols but
one are with zero amplitude1.

The rest of the paper is organized as follows. In Section 2, we
introduce the system model, and provide some background on non-
linear EH. In Section 3, we formulate the problem and introduce the
NN architecture. Section 4 is dedicated to the evaluation of the per-
formance of the NN architecture. Finally, Section 5 concludes the
work.

2. SYSTEM MODEL

The design of communication systems, in general, relies on the op-
timization of individual components of the transmitter and the re-
ceiver. However, in many scenarios, it is unclear whether this ap-
proach is the optimal possible design. Motivated by this, we aim at
utilizing Machine Learning (ML) to enable optimization of SWIPT
systems for end-to-end performance, without the need for dividing
the transmitter and receiver into different sections.

We study a point-to-point SWIPT problem over an additive noise
channel2. The system model is shown in Figure 1, where the re-
ceiver is capable of harvesting the power (denoted by pd) of the
received signal as well as decoding the information, jointly3. The
baseband information bearing pulse modulated signal is represented
as x(t) =

∑∞
k=−∞ x[k]g(t − kT ), where g(t) is the pulse wave-

form and x[k] is the realization of the complex information-power
symbol xxx (considered as a random variable) at time k. The received
signal in the baseband is y(t) = x(t) + n(t), where n(t) is the
baseband complex-valued noise. The EH is fed with the received RF
signal, i.e., yRF(t) =

√
2Re{y(t)ej2πfct}, where fc is the carrier

frequency.

1We note that, in this paper, we focus on small-signal range analysis.
Therefore, we have assumed to operate in the non-breakdown regime of the
diode for reasons highlighted in [6].

2In this paper, we consider Additive White Gaussian Noise (AWGN) for
the channel noise, however, the approach can be extended to any noise model.

3The tools presented in this paper can be easily extended to the scenario
where there is a power splitter at the receiver as in [6].
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Fig. 2. The nonlinear model for the rectenna circuit.

Adopting the rectenna nonlinear model of 4 [3, 8, 17], the re-
ceived RF signal yRF(t) is converted at the rectifier’s output into a
DC signal across a load resistanceRL. Assuming perfect impedance
matching, i.e., Rin = Ra (Rin is the equivalent input impedance of
the circuit observed after the antenna), the received power is com-
pletely transferred to the rectifier. Therefore, we have E[|yRF(t)|2] =
E[|vin(t)|2]/Ra or equivalently vin(t) = yRF(t)/

√
Ra [3]. The cur-

rent id(t) flowing through the diode is related to the voltage drop
vd(t) by the Shockley diode equation id(t) = is(exp(

vd(t)
ηVT

) − 1),
where is, η and VT are the diode’s reverse bias saturation current,
the ideality factor (typically ranging between 1 and 2) and the ther-
mal voltage (approximately 25.85 mV at room temperature), respec-
tively. Assuming that the capacitance c of the LPF is sufficiently
large, the output voltage can be assumed constant, i.e., vo(t) ≈ vo
[17]. Applying Kirchoff’s current law to the circuit in Figure 2, we
have

id(t) = is

(
e
vd(t)

ηvT − 1

)
= is

(
e

−vo(t)+yRF(t)
√
Ra

ηvT − 1

)
(1)

= ic(t) + io(t) = c
dvo(t)

dt
+
vo(t)

RL
=

vo
RL

(2)

where (1) is due to vd(t) = vin(t)− vo = yRF(t)
√
Ra− vo, and (2)

is due to dvo(t)
dt

≈ 0, (recall vo is approximately constant). Reformu-
lating the RHS of the equations (1) and (2), and averaging (over one
sumbol duration and randomness of the channel input), we obtain5

E
[
1

T

∫
T

eByRF(t)dt

]
=

(
1 +

vo(t)

isRL

)
e
vo(t)
ηvT , (3)

where B ,
√
Ra

ηVT
. The DC power delivered to the load is po =

v2o/RL. Note that the RHS of (3) strictly increases with vo. Hence,
imposing a minimum delivery power constraint po ≥ pd is equiva-
lent to imposing a constraint on (3), i.e.,

E
[
1

T

∫
T

eByRF(t)dt

]
≥
(
1 +

√
pd

is
√
RL

)
e

√
RLpd
ηvT , fpd . (4)

Assuming a rectangular pulse g(t) with unit amplitude and duration
T , we have x(t) = x[k] in time slot k. Hence, the received signal
in the RF domain reduces to yRF =

√
2B(Re{x[k]} cos 2πfct −

Im{x[k]} sin 2πfct) in time slot k, where the symbol x[k] is a real-

4Rectenna is composed of an antenna and a rectifier. The antenna is mod-
elled as a voltage source followed by a resistance and the rectifier is modelled
as a nonlinear diode followed by Low Pass Filter (LPF).

5We note that the nonlinear model presented in this paper is a generaliza-
tion of the nonlinear model to complex channel inputs introduced in [17, 8].
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ization of random variable xxx at time slot k. Hence, (3) reads as

E
[
1

T

∫
T

eByRF(t)dt

]
= E

[
1

T

∫
T

e
√
2B(Re{y(t)} cos 2πfct−Im{y(t)} sin 2πfct)dt

]
(5)

≈ E
[
1

T

∫
T

e
√
2B(Re{xxx} cos 2πfct−Im{xxx} sin 2πfct)dt

]
(6)

= E
[
I0(
√
2B|xxx|)

]
, (7)

where in (6) we have neglected the effect of noise and in (7), I0(·)
is the modified Bessel function of the first kind and order zero, and
the equality is due to [18, Sec. 3.338, Eq. 4]. Using (7), the EH
constraint reduces to

E
[
I0(
√
2B|xxx|)

]
≥ fpd . (8)

3. IMPLEMENTATION

We model a SWIPT system as an autoencoder, where both the trans-
mitter and receiver are implemented as two NNs in order to perform
the encoding and decoding/harvesting processes, respectively. The
transmitter communicates one of M possible messages s ∈ M =
{1, 2, ...,M}, where each message s carries log2(M) bits, andM
denotes the message alphabet set. During transmission, each mes-
sage index s ∈ M is transformed into a one-hot vector (an M -
dimensional vector of all zeros except one in sth position). The one-
hot vector corresponding to the message s is denoted by s. Then the
NN maps the vector s into a codeword xxxn ∈ Xn of n complex sym-
bols. The mapping from the set of messagesM to the transmitted
signal space Xn is denoted by gθT (·) :M→ Cn, where θT refers
to the set of transmitter parameters, related to the weights and biases
across the layers of the NN. As the weights and the biases of the net-
work are real numbers, each symbol of the codeword is represented
by two output units corresponding to the real and imaginary part of
the symbol. We note that to satisfy the average power constraint at
the transmitter, a power normalization layer is included as the last
layer of the transmitter. The encoded signal xxxn is corrupted by the
channel noise (here we consider AWGN).

The received signal at the receiver is denoted by yyyn, where yyyn

is the n-length samples of y(t) taken with sampling frequency 1/T .
The receiver aims both to detect the transmitted symbol s as well
as harvest the power of the received signal pd. The decoding is
performed by mapping the received noisy codeword yyyn to an M -
dimensional probability vector denoted by ŝ (and outputting the de-
tected message ŝ by obtaining the index corresponding to the maxi-
mum probability) through a parametric function defined by a fully-
connected NN hθR(·) : Cn → M. θR refers to the set of receiver
parameters in terms the weights and biases across different layers of
the NN to be optimized. Note that the communication rate for this
system is log2(M)/n bits per channel use.

The constraint pd on the harvested power po at the receiver, i.e.,
po ≥ pd is directly related to E

[
I0(
√
2B|xxx|)

]
≥ fpd in (8) through

(4). Equivalently, we model the delivered power po as in (8)6. We
recall that for the power delivery purposes, the received RF signal is
directly fed to the EH. Therefore, for power delivery purposes, the
signal is not processed through the NN.

6This is due to avoid solving the nonlinear equation in (4) in each iteration
of the optimization.
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Fig. 3. Illustration of the autoencoder structure for the problem stud-
ied in this paper.

We model the information loss as the cross entropy function be-
tween the transmitted one-hot vector s, and the output probability
vector ŝ at the receiver, i.e., L(s, ŝ) = −

∑M
i=1 si log ŝi, where si

and ŝi indicate the ith entry of the vectors s and ŝ, respectively. Ac-
cordingly, the cost function used in order to optimize the system is
given by

L(θT , θR) =
1

m

m∑
k=0

L(s(k), ŝ(k)) + λ

E
[
I0(
√
2B|xxx|)

] , (9)

where m is the size of the training data, which is assumed indepen-
dent and identically distributed (iid). Note that different values of
the parameter λ ≥ 0 in (9) can be associated to different informa-
tion rate and power demands at the receiver. In our implementa-
tion of the NN-based autoencoder, which includes the encoder at the
transmitter, an AWGN channel between the transmitter and receiver
and the decoder at the receiver, we have used the Adam Mini-batch
Gradient Descent (MGD) algorithm with the programming written
in Tensorflow.

4. NUMERICAL RESULTS

In our model, we consider a training set of m = 105 symbols. The
training of the NN is implemented using Adam MGD algorithm with
mini batch sizes of 103. In order to decrease the dependency of
the final solution on the initialization of the algorithm, we run the
algorithmN times with the same design parameters (hereN = 500)
and each time with a different seed for initialization. Each message7

is transmitted over the complex baseband channel using n channel
uses (in this paper we have assumed n = 1 corresponding to the
communication rate log2(M) bits per channel use). We consider
a certain threshold as the maximum allowable Symbol Error Rate
SERmax (here we consider SERmax = 0.95). The objective is to
minimize the cost in (9) (for a predetermined size of the messages)
for different values of λ, while keeping the SER of the transmission
less than or equal to SERmax, i.e., SER≤ SERmax. Accordingly, for

7We assume that the message set follows a uniform distribution.
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Fig. 4. Representation of 16-symbols modulation for different val-
ues of λ (equivalent to different information rate and power demand
at the receiver) with SNR= 50 (16.98 dB). By increasing λ, the
delivered power po at the receiver increases.

each message size, the value of λ in (9) is increased incrementally,
starting from λ = 0 (Note that λ = 0 is equivalent to information-
only demands). We continue increasing λ until the inequality SER≤
SERmax is contradicted.

In Figure 4, the transmitted signal modulations are shown for
M = 16 and for different values of λ. Recall from (9) that λ is
interpreted as a factor to control the information rate and power de-
mand at the receiver. By increasing λ, the demand for power at
the receiver increases. Accordingly, the transmitted signal modula-
tion loses its symmetry around the origin in a way that one of the
transmitted symbols (power symbol) is getting away from the ori-
gin. This observation is similar to the result in [7], where it is shown
that for the Gaussian inputs, in order to have the maximum delivered
power at the receiver, the transmitter is to allocate its power budget to
solely real or imaginary subchannels. Another observation is that, as
the power demand at the receiver increases, the transmitter sacrifices
some of the messages by mapping them to the zero symbol (e.g., see
the last five signal constellations in Figure 4). In the extreme sce-
nario, where the receiver merely demands for power (still some in-
formation is transmitted over the channel, however with a very high
SER), we have only two symbols (indeed one power symbol far from
the origin and the remaining information symbols collapsing on top
of each other at zero). Additionally, an interesting observation about
the SWIPT modulations in Figure 4 (specifically focusing on the
last modulation and considering a very long transmission) is that,
they approach to distributions with low-probability/high-amplitudes
and high-probability/zero-amplitudes. This result is also inline with
the result obtained in [9], where it is shown that the optimal channel
input distributions for power delivery purposes (accounting for non-
linearity with some simplification assumptions) follow the same be-
haviour, i.e., low probability-high amplitudes and high probability-
zero amplitudes.

In Figure 5, the delivered power po versus complementary of
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Fig. 5. Representation of the tradeoff between the delivered power
and information rate at the receiver. The delivered power at the re-
ceiver increases with the number of symbols of the transmitted signal
constellation.

symbol error rate (1 − SER) for different message sizes (M =
8, 16, 32) with signal to noise ratio SNR = 50 (16.98 dB) is il-
lustrated. It is observed that as the size of the message is increased
(which is equivalent to increasing the channel input symbols), the
delivered power at the receiver increases as well. This can be justi-
fied as follows. For power delivery purposes, the transmitter favours
distributions with high probability information symbols around zero
and a low probability power symbol away from zero. Noting that
the message set is uniformly distributed, such a distribution can be
achieved by having more symbols around zero and one symbol away
from zero. It can be easily verified that the probability of the power
symbol (equivalently the occurrence of the power symbol in the long
term) and its amplitude decreases and increases, respectively, with
the size of the message set. This in turn results in more delivered
power at the receiver. As the last point, we note that, due to the non-
lineary effect (dependency of the delivered power on Bessel function
in (4)), the delivered power is directly dependent on the channel in-
put average input power constraint. This is equivalent to the fact that
two systems with the same SNR but different average power levels
result in different designs. Due to lack of space, we have postponed
this investigation for the longer version of the paper.

5. CONCLUSION

In this paper, we studied a point-to-point SWIPT signal and sys-
tem design. We considered the system as an autoencoder, where
the transmitter and the receiver are implemented as deep neural net-
works. The end-to-end optimization of the system is done by jointly
learning the transmitter and receiver parameters as well as signal
encoding. We considered the case where the transmitter uses one
complex symbol to transmit each message. The numerical results
reveal that, as the power demand at the receiver increases, the trans-
mitted signal modulation is reshaped, such that one of the symbols
(power symbol) is shot away from the origin and the other symbols
(information symbols) are symmetrically distributed around the ori-
gin. As future research directions, we note that short block length
transmissions as well as obtaining a model that features the prac-
tical limitations of the rectenna (nonlinearity) accurately, are under
investigation.
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