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ABSTRACT

For millimeter wave (mmWave) systems with large-scale ar-
rays, hybrid processing structure is usually used at both trans-
mitters and receivers to reduce the complexity and cost, which
poses a very challenging issue in channel estimation, espe-
cially at the low transmit signal-to-noise ratio regime. In
this paper, deep convolutional neural network (CNN) is em-
ployed to perform wideband channel estimation for mmWave
massive multiple-input multiple-output (MIMO) systems. In
addition to exploiting spatial correlation, our joint channel
estimation approach also exploits the frequency correlation,
where the tentatively estimated channel matrices at multiple
adjacent subcarriers are input into the CNN simultaneously.
The complexity analysis and numerical results show that the
proposed CNN based joint channel estimation outperform-
s the non-ideal minimum mean-squared error (MMSE) esti-
mator with reduced complexity and achieves the performance
close to the ideal MMSE estimator. It is also quite robust to
different propagation scenarios.

Index Terms— mmWave massive MIMO, CNN, channel
estimation, frequency correlation

1. INTRODUCTION

Millimeter wave (mmWave) communications can meet the
high data rate demand due to its broad frequency band. Its
shortcoming of high propagation loss can be well compensat-
ed by using massive multiple-input multiple-output (MIMO)
[1], [2]. To reduce complexity and cost, phase shifter based
two-stage structure is widely used at both the transmitter and
the receiver to connect a large number of antennas with much
fewer radio frequency (RF) chains [3], [4].

For mmWave massive MIMO systems with two-stage
transceiver structure, channel estimation is a challenging
problem. In [5], a hierarchical multi-resolution codebook has
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been designed, based on which an adaptive channel estima-
tion algorithm has been developed by exploiting the channel
sparsity. In [6], the structured sparsity in angle domain has
been utilized to estimate the wideband channel for multi-user
mmWave massive MIMO uplink. In [7], a channel estimation
approach has been developed for mmWave massive MIMO
orthogonal frequency division multiplexing (OFDM) systems
with hybrid architecture and low-precision analog-to-digital
converters (ADCs) under different channel models.

Compared to the conventional methods, machine learning
(ML) is more powerful to uncover the inherent characteris-
tics inside data/signals collected in an end-to-end manner and
thus can achieve better performance when addressing vari-
ous problems in wireless communications [8]. In [9], deep
learning (DL) has been successfully used in joint channel es-
timation and signal detection in OFDM systems with interfer-
ence and non-linear distortion. In [10], an iterative channel
estimation has been proposed for the 3D lens mmWave mas-
sive MIMO systems, where denoising neural network (NN) is
used in each iteration to update the estimated channel. To re-
duce the channel state information (CSI) feedback overhead
of the frequency duplex division (FDD) massive MIMO sys-
tem, deep autoencoder has been employed in [11] to compress
the channel into a low dimensional codeword with the high
recovery accuracy. Exploiting time correlation of the chan-
nel, long short-term memory (LSTM) based deep NN (DNN)
has been introduced in [12] to develop a more efficient chan-
nel compression method for the CSI feedback. In [13], su-
pervised learning algorithms have been used to acquire the
downlink CSI for FDD massive MIMO systems with reduced
overheads for pilot and CSI feedback.

In this paper, we use a deep convolutional NN (CNN)
to address channel estimation for mmWave massive MIMO-
OFDM systems so that both spatial and frequency correlation
can be utilized. In the proposed joint channel estimation ap-
proach, the tentatively estimated channel matrices of adjacent
subcarriers are input into the CNN simultaneously. Except the
spatial correlation hidden in each tentatively estimated chan-
nel matrix, the frequency correlation among adjacent subcar-
riers provides additional information to improve the channel
estimation accuracy. The complexity analysis and numerical
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Fig. 1. System model of a mmWave massive MIMO-OFDM
downlink.

results show that the proposed CNN based joint channel es-
timation outperforms the existing method with reduced com-
plexity. Furthermore, the proposed approach exhibits good
robustness when facing new propagation scenarios without
any knowledge of channel statistics.

Notations: In this paper, we use upper and lower case
boldface letters to denote matrices and vectors, respectively.
‖·‖F , (·)T , (·)H , (·)†, and E{·} represent the Frobenius norm,
transpose, conjugate transpose, pseudo inverse, and expecta-
tion, respectively. CN (µ, σ2) represents circular symmetric
complex Gaussian distribution with mean µ and variance σ2.
δ(·) denotes the delta function. X⊗Y denotes the Kroneck-
er product of X and Y. vec(X) returns a column vector x
whose elements are taken columnwise from X and vec−1(x)
is the inverse process.

2. SYSTEM MODEL

As shown in Fig. 1, we consider a mmWave massive MIMO-
OFDM system, where the base station (BS) withNB antennas
and NRF

B RF chains transmits signals to a single user with NU
antennas and NRF

U RF chains. Phase shifters are employed to
connect a large number of antennas with a much fewer num-
ber of RF chains at both the BS and the user sides. We there-
fore assume NB � NRF

B and NU � NRF
U .

According to [6], the NU × NB channel matrix between
the BS and the user in the delay domain is given by

H(τ) =

√
NBNU

L

L∑
l=1

αlδ(τ − τl)aU(ϕl)a
H
B (φl), (1)

where L is the number of paths and αl ∼ CN (0, σ2
α) is the

propagation gain of the lth path with σ2
α denoting the average

power gain. For the lth path, ϕl and φl ∈ [0, 2π] are the
azimuth angles of arrival or departure (AoA/AoD) at the user
and the BS, respectively. For uniform linear array (ULA), the
corresponding response vectors at the user and the BS can be
expressed as

aU(ϕl) =
1√
NU

[
1, e−j2π

d
λ sin(ϕl), . . . , e−j2π

d
λ (NU−1) sin(ϕl)

]T
,

(2)

aB(φl) =
1√
NB

[
1, e−j2π

d
λ sin(φl), . . . , e−j2π

d
λ (NB−1) sin(φl)

]T
,

(3)
where d and λ denote the distance between the adjacent an-
tennas and carrier wavelength, respectively.
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Fig. 2. Proposed CNN for joint channel estimation.

According to the channel model in (1), the channel fre-
quency response at the kth subcarrier in OFDM is given by

Hk =

√
NBNU

L

L∑
l=1

αle
−j2πτlfs kK aU(ϕl)a

H
B (φl), (4)

where fs denotes the sampling rate and K is the number of
OFDM subcarriers.

To estimate Hk, the BS transmits pilot signal xk,u on the
beamforming vector fk,u ∈ CNB×1, u = 1, . . . ,MB, during
MB successive instants and the user employs MU combin-
ing vectors wk,v ∈ CNU×1, v = 1, . . . ,MU, to process each
beamforming vector. The pilot signal matrix associated with
the kth subcarrier at the baseband of the user is written as

Yk = WH
k HkFkXk + Ñk, (5)

where Wk = [wk,1, . . . ,wk,MU ] and Fk = [fk,1, . . . , fk,MB ]
are combining matrix and beamforming matrix, respectively,
Xk is an MB ×MB diagonal matrix with its uth diagonal el-
ement being xk,u, Ñk = WH

k Nk denotes the effective noise
after combining at the user, and Nk is additive white Gaussian
noise (AWGN) with CN (0, 1) elements before combining.

3. CNN-BASED CHANNEL ESTIMATION

In this section, we first develop the CNN based channel esti-
mation approach, followed by the complexity analysis for the
online estimation.

3.1. Algorithm Description

1) Signal Preprocessing: Without loss of generality, we as-
sume the worst case that Wk = W, Fk = F, and Xk =√
P I for all subcarriers with pilots. The pilot signal matrix,

Yk, is vectorized as

ȳk=vec(Yk)
(a)
=
√
P (FT⊗WH)vec(Hk)+vec(Ñk)

= Qh̄k + n̄k,
(6)

where Q =
√
P (FT ⊗WH), h̄k = vec(Hk), and n̄k =

vec(Ñk). In (6), step (a) is based on vec(ABC) = (CT ⊗
A)vec(B).

The vectorized pilot signal, ȳk, is further processed to ob-
tain the tentatively estimated channel matrix at subcarrier k
by

Rk = vec−1(r̄k) = vec−1(Q†ȳk). (7)
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The tentatively estimated channel matrices at S successive
subcarriers, Rk0 ,Rk0+1, . . . ,Rk0+S−1, within the same coher-
ence bandwidth will be input into the CNN simultaneously.

2) CNN Training: For the proposed CNN, the training
data set consists of labeled pairs (Rn,Hn), where Rn ∈
CNU×NB×S and Hn ∈ CNU×NB×S are three-dimensional
matrices and the sth two-dimensional matrices of them are
Rn
k0+s−1 ∈ CNU×NB and

Hn
k0+s−1

c ∈ CNU×NB , respectively.
In the above, Rn

k0+s−1 is the tentatively estimated channel
matrix at subcarrier k0 + s − 1 given by (7) and Hn

k0+s−1
is the corresponding true channel matrix. c > 0 is a scaling
constant to make the value range of the real and imaginary
parts of all the target data match the activation function and
to easily recover the channel. The tentatively estimated chan-
nel matrices of S subcarriers, Rn, are fed into the CNN to
approximate the corresponding scaled channels Hn.

For the mmWave massive MIMO systems, we assume
NB = MB = 32, NU = MU = 16 and S = 2 in Fig. 2. The
CNN receives the processed complex pilots, Rn

k0
∈ C16×32

and Rn
k0+1 ∈ C16×32 as the input and separates their real

and imaginary parts so that 4 16 × 32 real-valued matrices
are obtained. In the subsequent zero padding (ZP) convolu-
tional layer, the 4 matrices are processed by 64 3 × 3 × 4
convolutional filters with the rectified linear unit (ReLU) ac-
tivation function to generate 64 16× 32 real-valued matrices,
which are then processed by a batch normalization (BN) lay-
er. For the next 8 ZP convolutional layers, each layer uses 64
3× 3× 64 convolutional filters and outputs 64 16× 32 real-
valued matrices with the ReLU activation function, followed
by a BN layer. The output layer uses 4 3 × 3 × 64 convolu-
tional filters to process the 64 16 × 32 real-valued matrices
and obtains the estimated real and imaginary parts of the s-
caled channel matrices of the k0th and (k0 + 1)th subcarriers.
Hyperbolic tangent activation function is used in the output
layer to map the output into interval [−1, 1]. After scaling up
and combining the corresponding real and imaginary parts,
the 16× 32 complex-valued estimated channel matrices, Ĥn

k0

and Ĥn
k0+1, are obtained.

The objective of the offline training for the CNN is to min-
imize the MSE loss function

MSELoss =
1

Ntrc2

Ntr∑
n=1

S∑
s=1

∥∥∥Hn
k0+s−1 − Ĥn

k0+s−1

∥∥∥2
F
, (8)

where Ĥn
k0+s−1 is the sth output matrix of the CNN when the

input is Rn.
3) CNN Testing: After the centralized training, the CNN

will be deployed at the receiver to obtain the estimated chan-
nel matrices, Ĥk0 , Ĥk0+1, . . . , Ĥk0+S−1, by jointly process-
ing the pilot matrices, Rk0 ,Rk0+1, . . . ,Rk0+S−1.

If the actual channel model differs from that in the train-
ing stage, a straightforward solution is fine-tuning but it is
hindered by the difficulty to collect the true channel. Fortu-
nately, as shown by Fig. 4 in Section 4, the offline trained
CNN is quite robust to the new channel statistics that are not

Table 1. CNN Parameter Settings
l M1,l M2,l Fl Nl−1 Nl
1 16 32 3 4 64

2 ∼ 9 16 32 3 64 64
10 16 32 3 64 4

observed before. This implies that further online fine-tuning
might only provide marginal performance improvement and
hence is not necessary.

3.2. Complexity Analysis

In this subsection, we analyze the computational complexity
of the proposed CNN based channel estimation approach in
testing stage and compare with minimum mean-squared error
(MMSE) approach. The required number of floating point
operations (FLOPs) is used as the metric.

For the proposed approach, the FLOPs come from the
received pilots processing in (7) and the CNN processing.
Since Q† in (7) is independent of channel realizations and
only needs to be calculated once, the computational com-
plexity of the received pilots processing is mainly caused by
matrix product and is CCNN,1 ∼ O(SN2

BN
2
U). According

to [14], the computational complexity of CNN processing is
CCNN,2 ∼ O

(∑Lc
l=1M1,lM2,lF

2
l Nl−1Nl

)
, where Lc is the

number of convolutional layers, M1,l and M2,l denote the
numbers of rows and columns of each feature map output by
the lth layer, Fl is the side length of the filters used by the
lth layer, Nl−1 and Nl denote the numbers of input and out-
put feature maps of the lth layer. These parameters are listed
in Table 1. The computational complexity of the proposed
approach is

CCNN ∼ O

(
SN2

BN
2
U +NBNU

Lc∑
l=1

F 2
l Nl−1Nl

)
, (9)

For the MMSE channel estimation, the channel covari-
ance matrix needs to be calculated based on least square (LS)
channel estimation once per channel realization, which incurs
the computational complexity of CMMSE,1 ∼ O(SN2

BN
2
U)

if considering both spatial and frequency channel statistic-
s. Then the channel estimation is refined by the covariance
matrix and the corresponding computational complexity is
CMMSE,2 ∼ O(S3N3

BN
3
U). Therefore, the overall computa-

tional complexity of MMSE is

CMMSE ∼ O(S3N3
BN

3
U). (10)

It is hard to compare CCNN with CMMSE straightforwardly
in general since the former depends on Lc, Fl, Nl−1, and Nl
besides S, NB and NU. If NB = 32, NU = 16, S = 2 and the
other parameters for the CNN are listed in Table 1, the pro-
posed CNN based approach is with computational complexity
in the order of magnitude of 108 while MMSE needs a higher
complexity in the order of magnitude of 109.
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Fig. 3. NMSE versus transmit SNR for the proposed CNN
based channel estimation and the existing methods.

4. NUMERICAL RESULTS

In this section, we present the simulation results of the pro-
posed CNN based channel estimation approach and compare
it with LS, non-ideal MMSE with estimated covariance ma-
trix and ideal MMSE with ture covariance matrix. F and W
in Section 3.1 are set as the first MB columns of an NB ×
NB discrete Fourier transform (DFT) matrix and the first MU
columns of an NU ×NU DFT matrix.

The channel data are generated according to the 3rd Gen-
eration Partnership Project (3GPP) TR 38.901 Release 15
channel model [15]. Specifically, we use the clustered delay
line (CDL) models, the carrier frequency, fc = 28 GHz, the
sampling rate, fs = 100 MHz, the number of antennas at the
BS, NB = 32, the number of antennas at the user, NU = 16,
the number of main paths, L = 3, the number of subcarriers,
K = 64, the number of beamfroming vectors, MB = 32, and
the number of combining vectors, MU = 16.

For the CNN, the training set, validation set, and testing
set contain 81,000, 9,000, and 19,000 samples, respective-
ly. The parameters of each layer of the CNN are as Table 1.
Adam is used as the optimizer. The epochs are set as 800
while the corresponding learning rates are 10−4 for the first
200 epochs, 5 × 10−5 for the next 400 epochs, and 10−5 for
the last 200 epochs, respectively. The batch size is 128. The
scaling constant is set as c = 2.

To measure the channel estimation performance, we use
the normalized MSE (NMSE), defined as,

NMSE = EHk

{
‖Hk − Ĥk‖2F /‖Hk‖2F

}
. (11)

Fig. 3 shows the NMSE performance versus signal-to-
noise ratio (SNR) of LS, MMSE, and the CNN based chan-
nel estimation over 2 adjacent subcarriers in the urban micro
(UMi) street non-line of sight (NLOS) scenario. The perfor-
mance of the CNN based approach at single subcarrier is also
plotted to demonstrate that frequency correlation is helpful
to improve the channel estimation accuracy. Through offline
training, the CNN based channel estimation outperforms the
non-ideal MMSE with estimated covariance matrix signifi-
cantly yet requiring lower estimation complexity according to
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Fig. 4. Robustness for different scenarios.

this figure and Section 3.2. Moreover, the performance of the
CNN based approach is very close to the ideal MMSE with
true covariance matrix, especially at the low and medium S-
NRs.

The robustness of the MMSE and proposed CNN based
approaches is shown in Fig. 4. The joint channel estimation
over 2 subcarriers is considered. The CNN is trained in the
UMi street NLOS scenario and is tested in both UMi street
NLOS scenario and urban macro (UMa) NLOS scenario. For
the MMSE, its covariance matrix is calculated in the UMi
street NLOS scenario and then the channel matrix is estimated
in both UMi street NLOS scenario and UMa NLOS scenario.
The channel statistics are unknown to both CNN and MMSE
when they predict the channels in the UMa NLOS scenari-
o. From this figure, the CNN based channel estimation ex-
hibits good robustness when facing the significantly different
channel statistics. Even under the mismatched UMa NLOS
scenario, the CNN based approach still outperforms the non-
ideal MMSE without mismatch. In contrast, both the ideal
and non-ideal MMSE fail to cope with the change of channel
statistics and suffer significant performance loss.

5. CONCLUSIONS

In this paper, we have developed a deep CNN based joint
channel estimation approach for mmWave massive MIMO-
OFDM systems. By inputting the preprocessed pilots of
multiple adjacent subcarriers into the CNN simultaneously,
both spatial and frequency correlation are utilized to provide
more accurate channel estimation. The proposed approach
is with reduced complexity but outperforms the non-ideal
MMSE and is close to the ideal MMSE. In the case with
channel statistics mismatch, the proposed approach exhibits
good robustness and outperforms the mismatched ideal and
non-ideal MMSE significantly.
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