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ABSTRACT

Fog computing is emerging as a promising paradigm to perform dis-

tributed, low-latency computation. Efficient computation peer of-

floading is critical to fully utilize the computational resources in fog

networks. In this paper, we consider computation peer offloading

problem in a fog network with time-varying stochastic time of ar-

rival tasks and channel conditions. Such time-varying conditions are

not available to all fog nodes. In order to minimize the latency of ac-

complishing arrival tasks, we propose an online algorithm based on

combinatorial upper confidence bounds algorithm with two uncer-

tain variables under the non-stationary bandit model. The proposed

computation offloading policy is optimized based on historical feed-

back. The performance of the proposed scheme is validated through

numerical simulations.

Index Terms— Fog Computing, Computation Peer Offloading,

Online Learning, Combinatorial Multi-Armed Bandit (CMAB).

1. INTRODUCTION

Mobile applications, such as augmented reality (AR), online High

Definition (HD) live and 3 dimensions (3D) modeling, are becom-

ing more and more popular in our daily life. In general, these appli-

cations are latency-sensitive or/and computation-intensive. On the

other hand, mobile devices always suffer from limited battery power

and computational resources.

Fog computing (a.k.a., an extension of mobile edge computing

(MEC)), offers computational capacity along the cloud to edge con-

tinuum [1]. In this architecture, mobile end-user devices can offload

intensive computational workload to fog nodes (FNs) (e.g., access

points, micro base stations) in the vicinity [2, 3]. Computation peer

offloading is crucial to balance the uneven distribution of workloads

and computation capabilities of FNs [4].

On the other hand, latency of the computation offloading is the

most critical performance metric in fog systems. Recently, a variety

of computation offloading schemes considering the latency problem

have been proposed. Some researchers considered the computation

offloading as a deterministic optimization problem, e.g., the joint

optimization of radio and computational resource [5]; the joint opti-

mization of latency and energy [6]; and the optimization of energy

consumption while satisfying delay constraints [7]. However, the

above works do not consider existing condition of real-time informa-

tion of the fog network, such as, the queue condition of FNs. In this
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regard, the Lyapunov optimization method was adopted in [8–10]

to turn the tricky stochastic programming problem into a sequen-

tial decision problem. Besides, the authors in [11] proposed an on-

line secretary scheme to minimize the latency of computation peer

offloading under uncertainty on the arrival process of neighboring

FNs.

The majority of existing research perform computation peer of-

floading under (some of) the following assumptions: (i) information

availability and (ii) static network characteristics [12, 13]. These as-

sumptions may not be representative in reality. For example, many

end users in fog network are mobile, so the network characteristics

change over time and some real-time information (e.g., the queue

condition of other FNs) is unaware to each FN.

In this paper, we consider a fog network where: (i) the arrival

task of every FN is a stochastic and non-stationary random pro-

cess, where its statistics is not known as a priori and (ii) the FN

offloads tasks to other FNs in the vicinity, given no prior informa-

tion on channel condition and the waiting tasks’ queue length of

other FNs. Existing algorithms for computation offloading do not

fully consider the uncertainties mentioned above and are not in favor

of these assumptions. To deal with these uncertainties, we formu-

late the computation peer offloading problem as a sequential deci-

sion problem. We investigate efficient computation peer offloading

scheme with the minimal latency requirement based on combina-

torial multi-armed bandit (CMAB) scheme. The proposed method

endeavors to learn the statistical information of the network through

historical feedback. Besides, numerical analysis validate the pro-

posed computation offloading scheme.

The rest of the paper is organized as follows. Section 2 intro-

duces the system model and formulates the optimization problem.

An online learning algorithm for computation offloading is proposed

in section 3 and numerical results are given in section 4. Finally, sec-

tion 5 concludes the paper.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, we consider a fog network, defined by a setN , consist-

ing of N FNs. Each FN can cooperate with other neighboring FNs.

FNs are assumed to be the roles of collecting, storing, controlling,

and processing the task data from end-user devices, as is typical in

practical fog networking scenarios [14]. In practice, the information

exchange among the FNs will be difficult. The condition of each

FN is changing constantly, so the exchanged information may be out

of date to other FNs. Besides, how to coordinate the information

exchange can be a challenging issue.
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To simplify the discussion, we assume that the operational time-

line is discretized into time slots, t ∈ {1, 2, ...}. Once FN i receives

xt
i task, it decides how to offload the task. The incoming task can

be divided into several parts and FN i allocates the partial task to

different FNs (including itself). Let αt
ij (j ∈ N \ i) denote the

fraction indicator between FN i and j, which indicates that FN i of-

floads αt
ijx

t
i task to FN j. Notation αt

ii represents the fraction of

local computing. The task distribution variables are represented as

vector αt
i =

[
αt
i1, ..., α

t
ii, ..., α

t
iN

]
.

Next we consider the delay of peer computing and local com-

puting. Peer computing delay can be mainly divided into three

parts: transmission delay of dispatching tasks, computation delay

and transmission delay of downloading computation results. The

transmission delay of downloading can be negligible due to relative

small sizes of computation results [7]. Given transmission power

Ptx,i of FN i, the achievable (approximate) transmission rate is

given by the Shannon channel capacity,

rij = W log2

(
1 +

Ptx,iGij

σ2

)
, (1)

where W is the channel bandwidth, σ2 is the noise power and Gij is

the channel gain between FN i and j. Different from previous work,

the channel condition in this work is assumed to be time-varying and

FN i can not obtain the accurate channel state information (CSI).

This assumption is practical under the consideration of minimal la-

tency. The transmission power Ptx,i and W are static in our work.

For the transmission rate rij , it changes over time. We denote ãt
ij as

the average transmission rate during the transmission period Tj . So

the transmission delay is

Tj =
αt
ijx

t
i

ãt
ij

. (2)

When the task αt
ijx

t
i arrives at FN j, it will experience a wait-

ing period before previous tasks in the queue are processed. Without

loss of generality, FNs obey the rule of first in first out (FIFO). The

computing service rate µj is fixed and available to all FNs as a prior.

On the other hand, due to the stochastic characteristics of arrival

tasks, the queue lengths of other FNs are unaware to FN i when mak-

ing the offloading decision. Let Qt
j denote the current computation

queue length of FN j when task αt
ijx

t
i arrives. FN i can download

the computation results from its neighbor node j when FN j finishes

the execution of Qt
j and αt

ijx
t
i. Meanwhile, the queue length and

transmission rate ãt
ij at current time slot are observed. Based on the

above discussions, the computation latency at FN j is

Cj =
Qt

j + αt
ijx

t
i

µj

, (3)

and the total peer computing delay is

Dj = Tj + Cj . (4)

The peer computing delay can not be infinite in practice, so we let it

be bounded in [0, T ], where T is the maximum delay that FN i can

tolerate.

Let µi denote the local fixed computing service rate and Qt
i as

the current queue length at FN i. Similarly, the local computing

latency can be defined as

Di =
Qt

i + αt
iix

t
i

µi

. (5)

The online task distribution problem can be formulated to mini-

mize the maximum latency when computing an incoming task of FN

i,
min
α

max(Di, Dj∈N\i), (6)

s.t. αt
ii +

∑
j∈N\i

αt
ij = 1, (6a)

αt
ii ∈ [0, 1] , αt

ij ∈ [0, 1] ,∀j ∈ N \ i. (6b)

3. LEARNING THE OPTIMAL COMPUTATION PEER

OFFLOADING

In this section, we first discuss the relationship between the CMAB

model and computation peer offloading problem. Then we propose

our online learning algorithm for computation peer offloading.

Bandit problems are motivated from a variety of real world prob-

lems, such as, stock investment, medical trials and dynamic pricing.

Though the bandit models are quite simple to solve the real world

problems, these models still provide an insight to give efficient solu-

tions to the problems [15].

To solve the optimization problem (6), the difficulty lies in how

to learn the statistics of channel and the queue status of other FNs in

real time. CMAB model can be applied to solve this problem. With

CMAB model, the probed FNs can give feedback about the channel

and queue status. Thus partial network information are updated in

each iteration. Then a sequential decision problem can be formulated

and optimized.

In the CMAB model, an agent gambles on a bandit machine

with a finite set of arms, where each arm has unknown distribution.

At each round, several arms defined as a super arm S (S ⊆ N )
can be pulled simultaneously. In this work, we consider the semi-

bandit feedback is available, meaning that the agent observes only

the outcomes of pulled arms in one round of play [16]. The reward of

the super arm depends on the outcomes of pulled arms. The CMAB

problem is to decide which super arm to pull at each round in order

to maximize the accumulated expected reward over time, and at the

same time acquire knowledge about the the uncertainty of the bandit

system. The expected values of the arms are estimated based on the

instantaneous reward observations.

In our computation peer offloading model:

(a) The agent represents the FN i. At each round, the selected FNs

that receive partial tasks are defined as a super arm S (S ⊆ N ),
or the super FN S . In other words, the super FN S is defined to

be the FN(s) whose fraction indicator α > 0.

(b) The individual reward rtn (n ∈ N ) of each FN n in time slot t
is related to the computation peer offloading delay as defined in

(4).

Classical CMAB problem usually deals with one i.i.d. variable.

In our case, on the other hand, there are two unknown variables, i.e.,

the uncertainty of the channel status and the uncertainty of the load

condition of other FNs. Another modification of our problem lies in

that the agent is a special single arm with deterministic reward. The

direct application of classical CMAB solutions ignores the utiliza-

tion of FN i itself. To avoid ambiguity, we still call FN i the agent

instead of a special arm. The individual reward rtn is defined as

rtn =

{
T −Dn, if n ∈ S,

0, otherwise,
(7)

and the individual reward is also bounded with [0, T ]. Let R(S)
denote the instantaneous reward when super FN S is played. We
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have

R(S) = min (Rt), (8)

where R
t represents the set of rtn,∀n ∈ S . Equation (8) indicates

that the reward of super FN S is determined by the minimum in-

dividual reward among the selected FN(s). It is a nonlinear reward

function, and it is more complex than a simple summation of indi-

vidual rewards of pulled arms [16].

Next we are going to study the optimal task distribution policy.

Let us first introduce the following proposition.

Proposition 1. If there exists a task distribution α
∗ satisfying Dk =

Dl,∀k, l ∈ N , then α
∗ is the unique and optimal solution of prob-

lem (6).

Proof of Proposition 1. Suppose there exists a different vector α
′

that can achieve the same minimal latency as the task distribution

α
∗ does. For α′, we can find a certain FN A satisfying α′

A < α∗
A

(α′
A ∈ α

′, α∗
A ∈ α) yielding DA (α′

A) < DA (α∗
A). Due to

the constraint (6a), there exists another FN B that satisfies α′
B >

α∗
B (α′

B ∈ α
′, α∗

B ∈ α
∗), and DB (α′

B) > DB (α∗
B). Since

DB (α′
B) > DB (α∗

B) = DA (α∗
A) > DA (α′

A), the latency de-

fined in (6) incurred by policy α
′ is larger than α

∗. Policy α
′ can

not achieve the same minimal latency as α∗, thus α∗ is optimal.

Furthermore, Dj is a monotonically increasing function with

respect to αij since
∂Dj

∂αij
> 0 and so does Di. Hence, α

∗ is

unique. �

Proposition 1 reveals the fact that if the elements of Rt are all

equal, R(S) can achieve the maximum reward; if Qt
j and ãt

ij are

known, the optimal policy will pull, at each round, the super FN

with the highest reward.

The regret of policy α is the difference between its expected

accumulated reward and that of the policy which always pulls the

best arm(s). Hence, the regret is a metric of the loss due to not

knowing the reward profile of the arms. The desired algorithm is

to find a policy with sub-linear regret [15]. An algorithm that has

good theoretical results in terms of regret with nonlinear reward is

the combinatorial upper confidence bounds (CUCB) algorithm [16].

Theoretical results in [16] show that the regret of the CUCB algo-

rithm is bounded by O(log(t)).
Let Aj denote the number of times the FN j has been selected.

Once FN j has been selected in one time slot, Aj ← Aj + 1, oth-

erwise, Aj ← Aj . Our proposed algorithm based on the framework

of CUCB is listed in Algorithm 1.

Algorithm 1 Water Filling CUCB (WFCUCB) for Computation

Peer Offloading

1: For each FN j, choose an arbitrary super FN S ∈ N such that

j ∈ S and update variables Aj and rj .

2: t← N − 1.

3: while true do

4: t← t+ 1.

5: For each FN j, set r̂j = rj + γ · T ·
√

3 ln t
2Tj

.

6: if r̂j > T then

7: r̂j = T .

8: end if

9: Obtain α
t
i using Algorithm 2 with r̂j .

10: Choose S according to α
t
i and update Aj and rj .

11: end while

Here γ ∈ (0, 1], which is an attenuation factor. Step 1 and 2
of Algorithm 1 guarantee that every FN has been selected once in

first N − 1 rounds. Notation rj denotes the individual reward sam-

ple mean, and r̂j denotes the perturbed version of rj . If r̂j exceeds

T , we simply replace it with T . The proposed WFCUCB algorithm

does not utilize the estimates rj to solve the computation peer of-

floading problem. Instead we utilize the perturbed versions r̂j . The

perturbation in step 5 promotes the selection of FNs that are not

selected frequently, by artificially increasing their expected reward

estimates. Step 5 also indicates the tradeoff between exploration and

exploitation: whether one should try some FNs that have not been

selected much (exploration) or one should stick to the FNs that pro-

vide good reward so far (exploitation).

In our computation peer offloading problem, there are two un-

certain variables, Qt
j and ãt

ij . The variable ãt
ij can be regarded as

i.i.d., in a dynamic network, the statistical characteristics of task

arrival change over time, so that Qt
j are not necessarily identically

distributed. Here we assume Qt
j are independent through time, but

their distribution may change mildly from one time slot to another.

For FN i, the updated rules of estimated Qj and aij in time slot

K (K ≥ 1) are as follows,

Qj =

∑K

t=max{1,K−τ+1} ρ
K−t ·Qt

j · I{αt
ij

>0}
∑K

t=max{1,K−τ+1} ρ
K−t · I{αt

ij
>0}

,

1 ≥ ρ > 0, τ > 0, (9)

aij =

∑K

t=1
ãt
ij · I{αt

ij
>0}

Tj

, (10)

here ρ is a forgetting factor which represents and compensates the

non-stationary characteristics of queue length, τ represents the sam-

pling window length. Notation I{αt
ij

>0} denotes the indicator func-

tion that returns 1 if αt
ij > 0 and returns 0, otherwise. In order to

probe all FNs a sufficient number of times, we define the perturbed

versions Q̂j and âij as follows,

Q̂j = Qj −
r̂j − rj

µj

, (11)

âij = aij . (12)

The introduction of Q̂j and âij can balance the tradeoff of explo-

ration and exploitation. Thus we can reliably estimate the associated

queue length and channel condition.

The queue processing time of each FN is defined as, T em
j =

Q̂j/µj and the queue processing time of the agent is T em
i = Qi/µi.

Let T em = [T em
1 , ..., T em

i , ..., T em
N ], then we reorder T

em such

that T em
k < T em

l if k < l, ∀k, l ∈ N .

Algorithm 2 Task Distribution Adaptation Algorithm

1: for k = 1 : N do

2: Compute α∗ according to Proposition 1 among ranked top k
FN(s) in T

em and obtain optimal delay time D.

3: if D ≤ T em
k+1 or k = N then

4: return α
∗.

5: Break.

6: else

7: Continue.

8: end if

9: end for

Algorithm 2 determines the participants of computation peer

offloading and their related workload. Its computation complexity is

linear (O(n)) and has negligible latency compared to the latency of

local computing or peer computing.
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4. NUMERICAL RESULTS

In this section, we consider a fog network with tasks arrival in FNs

according to a non-stationary Poisson process with increasing arrival

rate. The non-stationary Poisson process can be naturally regarded

as the formation of the computation peak period, e.g., the beginning

of office hour. Variable ãij follows a uniform distribution in (20, 30)
MB/s in each time slot. Variable µij and µi are generated from a

uniform distribution in (10, 30) MB/s. Besides, γ = 0.1, ρ = 0.99,

τ = 10 and T is 100 ms during the simulations.

To demonstrate the effectiveness of WFCUCB, we compare the

performance of the proposed algorithm to following strategies: (i)

Local: only local computing is considered for all arrival tasks; (ii)

Random: the selected FNs are random and the amount of offloading

tasks are determined in an average allocation strategy at each round;

(iii) Fixed: all FNs are selected and the computation allocation of

each FN is equal; (iv) Optimal: the optimal policy with the help of

task distribution adaptation algorithm in hindsight.
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Fig. 1. Average latency of WFCUCB, local, random, fixed and opti-

mal computation peer offloading, xt
i = 1MB, N = 100.

Fig. 1 depicts the average latency of the proposed WFCUCB al-

gorithm and other algorithms. We observe that WFCUCB achieves

lower average latency compared to local, random and fixed algo-

rithms, which does not require prior information of channel con-

dition and the stochastic characteristics of arrival tasks. The con-

vergence performance of WFCUCB represents the online learning

process of other FNs’ characteristics. Optimal strategy assumes the

availability of global knowledge of the CSI and queue length of all

other FNs and performs best among these algorithms. However, the

overhead of acquiring such information prohibits its practical adop-

tion in computation peer offloading.

Fig. 2 presents the impact of arrival task size in terms of aver-

age latency. The average latency performance of these algorithms is

(approaching) stable after 10, 000 rounds. As the arrival task size

increases, the average latency of local computing increases fastest

among these algorithms which indicates the necessity of computa-

tion offloading. Another interesting observation is that local strategy

performs better than random and fixed strategies when the task size

is small, in which case the arrival task size is so small that it can be

executed in time at local nodes.

The robustness of the proposed algorithm with respect to dif-

ferent network size N are depicted in Fig. 3. The simulation re-
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Fig. 2. Average latency of different arrival task size, t = 10, 000,

N = 100.
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Fig. 3. Average latency of different network size, xt
i = 1MB, t =

10, 000.

sults reveal that the network latency of WFCUCB is much lower

than random or fixed strategy. When the network size increases, the

WFCUCB algorithm achieves better performance. It can be inter-

preted as the agent has more choices when the network size becomes

larger.

5. CONCLUSIONS

In this paper, we have considered computation peer offloading in fog

network with minimal latency requirement. The global knowledge

of all FNs is unavailable in practice. We have modeled the problem

as a CMAB problem without prior information about channel condi-

tion and the stochastic characteristics of arrival tasks. To solve this

problem, we have proposed the WFCUCB algorithm, which extends

classical CMAB problem to the case with one i.i.d. variable and one

non-stationary random variable. Numerical results have confirmed

that the WFCUCB algorithm can learn fast and achieve better per-

formance compared to other feasible strategies.
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