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ABSTRACT
An adversarial multi-user multi-armed bandit framework is used
to develop algorithms for uncoordinated spectrum access. It is
assumed that the number of users is unknown, and that users
receive zero reward on collision. The users do not coordinate with
each other, and an adversary chooses different rewards for different
users on the same channel. The proposed algorithm combines
the Exp3.P algorithm developed in prior work for single user
adversarial bandits with a collision resolution mechanism to achieve
sub-linear regret. It is shown that if every user employs the proposed
algorithm, the system wide regret is of the order O(T

3
4 ) over a

horizon of time T . The algorithm is then extended to the dynamic
case where the number of users in the system evolves over time,
and it is shown to lead to sub-linear regret.

Index Terms— Cognitive radio, multi-armed bandits, dynamic
spectrum access.

I. INTRODUCTION

The existing spectrum management paradigm treats frequency
spectrum as a fixed commodity, which leads to spectrum under-
utilization. Cognitive radio has emerged as a useful strategy to
increase spectrum utilization. The existing literature on cognitive
radio has largely been focused on the primary/secondary user
paradigm, where secondary users need to detect vacant spectrum
when available and vacate the occupied spectrum when a primary
user wants to transmit.

We focus on a different type of spectrum sharing system in which
there is no distinction between users, and in which there is no
coordination among the users. The collective performance across
all users is more important than that of individual users. This is in
contrast to the typical primary/secondary user paradigm in which
secondary users bear the responsibility for ensuring priority-based
spectrum sharing. We model this system using an adversarial multi-
user multi-armed bandit framework [1]. Our goal is to design an
efficient channel access mechanism by managing interference in
the system through a decentralized policy across the users.

Multi-armed bandit problems have been studied in the context of
cognitive radio using different formulations. However, all the exist-
ing approaches with multiple users have focussed on Markovian or
stochastic multi-user multi-armed bandits (MABs). A Markovian
channel model for a two-user two-channel system was considered
in [2], where the probability transitions were assumed to be known.
Coordination between users was considered in the schemes of
[3], [4], [5]. The stochastic MAB model with no communication
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between the users was considered in [6], [7], [8], [9] and [10].
However, it was assumed that the channel is same for all the
users. A stochastic multi-user MAB with user dependent rewards on
channel was considered in [11]. However, the algorithm considers
coordination and communication between users via an auction
algorithm.

The adversarial bandit problem is an important variation of the
multi-armed bandit problem, where no stochastic assumption is
made on the generation of rewards. The term “adversarial” refers
to the mechanism choosing the sequence of rewards on each arm.
If this mechanism is independent of the users actions, then it is an
oblivious adversary. If the mechanism may adapt to the users’ past
behaviors, then it is a non-oblivious adversary [1]. The existing
literature on adversarial MABs is focused on the single user case,
and a detailed overview of the proposed solutions for the adversarial
MAB formulation can be found in [1]. The proposed algorithms in
the single user adversarial setting achieve a sub-linear regret of the
order of O(

√
T ) over a time horizon T .

We consider multi-user dynamic spectrum allocation without any
coordination among the users. We also assume that the rewards on
each channel are user dependent and may vary with time. Such a
system is captured through a multi-user adversarial MAB model,
particularly when the reward distribution for each channel and user
may change over time. We assume that the number of users is
unknown and that there is no communication between the users.
However, we make the mild assumption that the users have access
to a shared clock for time synchronization (see also, [9], [12], [13]).
We propose an algorithm, and show that if each user employs the
algorithm, the system wide regret is O(T

3
4 ) over a time horizon

T . To the best of our knowledge, we are the first to consider the
multi-user setting for adversarial MABs and to provide sub-linear
regret guarantees. We extend our algorithm to the dynamic case,
and show that, with minor restrictions on the rate at which users
enter the system, we can achieve sub-linear regret.

II. SYSTEM MODEL AND NOTATION
Let K be the number of users in the system and M the number

of channels. We assume that there are more channels than users in
the system i.e., K ≤ M . We also assume initially that the users
have unlimited data to transmit. In the dynamic setting, we lift
this assumption, and allow the users to become inactive based on
their data needs and new users to join the system. We assume that
the users have knowledge of M but not of K. The assumption of
known M is reasonable if the spectrum partition is enforced and
fixed. On the other hand, it is not realistic to assume the knowledge
of K in an uncoordinated network.

We model the system as an adversarial multi-user MAB with
K users and M channels. We assume that each user chooses a
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channel according to the same algorithm. For user k ∈ [K], let
pkt = (pk1,t+1, ..., p

k
M,t+1) denote the probability vector across the

arms, where pkm,t is the probability of choosing arm m at time
t. Let akt ∈ [M ] denote the channel chosen by user k at time t
based on the previous reward history of the user according to pkt .
We assume that if more than one user chooses the same channel,
they all receive zero reward. In other words, the users observe zero
reward on collision. If there is no collision on the channel, the user
observes a reward that is chosen by an adversary. We assume that
the adversary chooses different reward for different users for the
same channel. For example, the reward could be the rate achieved
by the user on the channel which depends on the channel gain of
the specific user. Let gk

akt ,t
denote the reward observed by user k

on choosing channel akt at time t. We assume that gki,t ∈ [0, 1].
We adopt the standard notion of pseudo-regret used for adver-

sarial bandits in [1]. The expected total regret in the system until
time T is defined as

E[R(T )] = max
K:K⊆[M ],|K|=K

E

[
T∑
t=1

∑
i∈K

gki,t −
T∑
t=1

K∑
k=1

gkakt ,t

]
.

III. SINGLE USER MAB
We consider the Exp3.P algorithm described in [1] for a single

user MAB in an adversarial setting. We modify the algorithm so
that the user chooses an arm and updates the probability vector
only in a few time-slots. This modification is useful in the multi-
user case, where the users may not choose an arm in each time-
slot due to possible collisions. We now present a modified version
of the Exp3.P algorithm, in which a new arm is chosen and the
probability is updated at time-slots t1, t2, . . . , tn such that n ≤ T
and tj+1− tj = T

n
. For each j ∈ [n], we consider the reward over

the time-period tj+1 − tj , with the reward being normalized to lie
between 0 and 1. We drop the superscript denoting the user in the
notation for the single user case.

Modified Exp3.P

1: β =
√

lnM
Mn

, η = 0.95
√

lnM
Mn

and γ = 1.05
√

M lnM
n

.
2: Initial probability distribution p0 = ( 1

M
, . . . , 1

M
).

3: for j = 1, . . . , n do
4: aj ∼ pj , remain on arm for next tj+1 − tj time-slots

5: Compute reward as g′i,j =

∑
tj≤t≤tj+1

gi,t

tj+1−tj
and the esti-

mated gain for each arm as

g̃i,j =
g′i,j1aj=i + β

pi,j

and update the cumulative gain G̃i,j =
∑j
s=1 g̃i,s

6: Calculate the new probability distribution over the arms
pj+1 = (p1,j+1, ..., pM,j+1) where

pi,j+1 = (1− γ)
exp(ηG̃i,j)∑M

m=1 exp(ηG̃m,j)
+

γ

M

7: end for

Theorem 1: The expected regret of Modified Exp3.P algorithm
until time T is given by

E

[
T∑
t=1

(gm,t − gat,t)

]
≤ max
m∈[M ]

E

[
T∑
t=1

(gm,t − gat,t)

]
≤ T√

n
h(M)

(1)

where h(M) = 5.15
√
M lnM +

√
M

lnM
, and does not depend on

T and n ≤ T .
Proof: We have

E

[
T∑
t=1

(gm,t − gat,t)

]
= (T/n)E

[
n∑
j=1

(g′m,j − g′aj ,j)

]
, (2)

where g′m,j =

∑
tj≤t≤tj+1

gm,t

tj+1−tj
. Using (2) and noting that until

time T we consider n time-slots, the proof follows from the regret
bound of Exp3.P in [1].

IV. MULTI-USER MAB: ALGORITHM
We now consider the multi-user adversarial bandits under a

known finite horizon T and propose an algorithm which when
employed by all users independently leads to regret of order
O(T

3
4 ).

In a multi-user adversarial system, every time t that a user k
chooses an arm according to a certain probability distribution pkt to
randomize against the adversary, there is a possibility for collision
with other users. Hence there is a need for a collision resolution
mechanism, so that the regret does not grow linearly with time.
Instead of choosing an arm every time-slot, a user chooses an arm
only a sub-linear number of times until T ( e.g., T x where x <
1). The goal is to randomize sufficient number of times so as to
counteract the adversary while making sure that the regret due to
collisions does not become large.

We propose an algorithm (Algorithm 1) that combines the
modified Exp3.P algorithm (Section III) with a collision resolution
mechanism. In the algorithm x < 1. In the analysis in Section V,
we pick x = 1

2
which is large enough to maintain the sub-linear

regret achieved by the modified Exp3.P algorithm but small enough
so that the regret due to collisions is sub-linear as well.

In every time-interval of length T 1−x, we first have a collision
resolution phase. Each user chooses a channel with probability pkt .
A user settles or fixes on a channel if at any time the user finds a
channel without collision. Once a user settles on a channel, the user
keeps transmitting on the channel until the end of the time-interval
of length T 1−x. The system incurs regret until all K users have
settled on K channels, and we call this duration the fixing time or
the collision resolution phase. The remaining part of the algorithm
corresponds to each of the K users employing the modified Exp3.P
algorithm, where they choose a channel once every T x time-slots.

V. MULTI-USER MAB: ANALYSIS
In this section, we first consider the regret due to the collision

resolution phase, then the regret due to the modified Exp3.P part
of Algorithm 1, and then combine them to find an upper bound
on the system-wide regret incurred when each user independently
employs Algorithm 1.

V-A. Regret during collision resolution
Theorem 2: The expected regret accumulated by the system

during a collision resolution phase is upper bounded by

K2MK

γ
≤ K2MKT

x
2

√
M lnM

.

Proof: We first note from equation (3) that the probability
of choosing any channel by any user is at least γ

M
. Let ρkt =

maxm p
k
m,t, which implies that ρkt ≥ 1

M
. Let “maximal” channel
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Algorithm 1

1: β =
√

lnM
MTx , η = 0.95

√
lnM
MTx and γ = 1.05

√
M lnM
Tx .

2: The initial probability distribution pk0 = ( 1
M
, . . . , 1

M
)

3: for t = multiples of T
Tx do

4: for t′ = 1 to T 1−x do
5: akt′ ∼ pkt
6: if no collision then
7: break
8: end if
9: end for

10: Choose action akt′ for the remaining T 1−x − t′ time-slots

11: Compute reward as g′ki,t =
∑
gki,t

T1−x−t′ and the estimated gain
for each arm as

g̃ki,t =
g′ki,t1ak

t′=i
+ β

pki,t

and update the cumulative gain G̃ki,t =
∑t
s=1 g̃

k
i,s

12: Calculate the new probability distribution over the arms
pkt+1 = (pk1,t+1, ..., p

k
M,t+1) where

pki,t+1 = (1− γ)
exp(ηG̃ki,t)∑M

m=1 exp(ηG̃km,t)
+

γ

M
(3)

13: end for

for a user refer to the channel that has the highest probability
of being chosen by that particular user. Thus, each user can be
associated with one channel such that probability of choosing it
is greater than 1

M
. Since K ≤ M , for each user, there exists at

least one channel such that it not the maximal channel for any of
the remaining K− 1 users. Note that even when some users fix or
settle on a channel, and there are both unfixed channels and unfixed
users in the system, we can still find an unfixed channel such that
it is not the maximal channel for the remaining unfixed users.

Based on the above discussion, we define the event Bk to be the
event where all unfixed users except user k choose their maximal
arm, and user k chooses an unfixed arm that is not the maximal
arm for any other unfixed users.

Let Mu,t denote the set of unfixed arms at time t. The proba-
bility of any player k being fixed at time t is given by,

Pr{User k being fixed}

=
∑

m∈Mu,t

Pr{User k is the only unfixed user on arm m}

≥ Pr(Bk)

≥ (Πi∈[K],i 6=kρ
i
t) min
m∈Mu,t

pkm,t

≥ γ

M
(

1

M
)K−1 =

γ

MK
.

For any player k, the expected time to get fixed is given by

E[tkf ] =
1

Pr{User k being fixed} ≤
MK

γ

and the regret during the collision resolution phase is given by

E

∑
k

maxk t
k
f∑

t=1

Rk,t

 ≤ E[Kmax tkf ] ≤ E[K

K∑
k=1

tkf ] ≤ K2E[tkf ],

where Rk,t denotes the regret incurred by player k at time t and
we have Rk,t ≤ 1 by our assumption that rewards lie between zero
and one.

V-B. Regret due to Modified Exp3.P
We now bound the regret incurred by the users using Algorithm

1 during the time the users are not in the collision resolution phase.
This corresponds to each of the K users independently employing
the modified Exp3.P algorithm introduced in Section III.

In Algorithm 1, when the users are not in the collision resolution
phase, each user employs modified Exp3.P with n = T x. Using
the result of Theorem 1 for K users, for any distinct set K ⊆ [M ]
consisting of K arms,

E

 ∑
t/∈collision phase

(∑
i∈K

gki,t −
K∑
k=1

gkakt ,t

) ≤ KT 1− x
2 h(M).

Thus,

max
K

E

 ∑
t/∈collision phase

(∑
i∈K

gki,t −
K∑
k=1

gkakt ,t

) ≤ KT 1− x
2 h(M)

(4)
where h(M) = 5.15

√
M lnM +

√
M

lnM
, and does not depend on

T .

V-C. Main Result
We now present the upper bound on the expected regret incurred

by the users employing Algorithm 1.
Theorem 3: The expected regret of K users using Algorithm 1

with M arms for T time-slots, is given by

E[R(T )] ≤ T
3
4 h′(M,K)

where h′(M,K) = K

(
5.15
√
M lnM +

√
M

lnM
+ KMK
√
M lnM

)
,

and does not depend on T . Thus, E[R(T )] ∼ O(T
3
4 ).

Proof: The expected regret is due to collision resolution as
well as the modified Exp3.P algorithm which is played a sub-
linear number of times. Let Tf denote the time taken for collision
resolution.

E[R(T )] ≤ T xKE[Tf ] + (T 1−x − E[Tf ])h(M)T
x
2

≤ K2MK

√
M lnM

T
3x
2 +KT 1− x

2 h(M)

∼ O(T
3x
2 + T 1− x

2 )

where the inequalities follow from Theorem 2 and equation (4),
and h(M) = 5.15

√
M lnM +

√
M

lnM
. If we choose x such that

3x
2

= 1− x
2

, we have x = 1
2

which gives us

E[R(T )] ≤ T
3
4K

(
KMK

√
M lnM

+ h(M)

)
.

VI. UNKNOWN TIME HORIZON
In this section, we extend the results to the case of unknown

time horizon. Each user considers some known time τ greater
than the expected fixing time for the system and runs Algorithm
1. Once the user reaches the end of time τ , the user continues
to use Algorithm 1 with a time-period of length 2τ . In this way
when the user reaches the end of the previous time-period, the user
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doubles it and continues with Algorithm 1. Let T be such that
τ + 2τ + . . .+ 2rτ ≤ T ≤ τ + 2τ + . . .+ 2(r+1)τ . Note that this
is same as 2(r+1)τ ≤ T + τ < 2(r+2)τ .

Algorithm 2

1: for (2(r+1) − 1)τ ≤ T < (2(r+2) − 1)τ do
2: Run Algorithm 1 with time-period 2r+1τ
3: end for

Theorem 4: The expected regret from using Algorithm 2 for T
time-slots where (2(r+1) − 1)τ ≤ T < (2(r+2) − 1)τ is given by

E[R(T )] ≤ h′(M,K)
(2(T + τ))

3
4

2
3
4 − 1

where h′(M,K) = K

(
5.15
√
M lnM +

√
M

lnM
+ KMK
√
M lnM

)
and does not depend on T . Thus, E[R(T )] ∼ O(T

3
4 ).

Proof: We have (2(r+1) − 1)τ ≤ T < (2(r+2) − 1)τ which
gives us 2(r+1)τ ≤ T + τ .

Using Theorem 3, the regret up to time T bounded as follows:

E[R(T )] ≤ h′(M,K)(τ
3
4 + (2τ)

3
4 + . . .+ (2r+1τ)

3
4 )

= h′(M,K)τ
3
4

(2(r+2) 3
4 − 1)

2
3
4 − 1

≤ h′(M,K)
(2(T + τ))

3
4 − τ

3
4

2
3
4 − 1

.

Note that each user only needs knowledge of K in order to fix
on an initial τ such that τ ≥ ETf , where Tf is the time taken for
collision resolution. Furthermore, τ can be chosen even without the
knowledge of K by simply replacing K by M , and the analysis
follows because K ≤M .

VII. DYNAMIC CASE

In this section, we extend the results to a dynamic system with
a changing number of users. Consider a system which starts with
K users, and in which users leave the system once they are done
with their transmission. It is easy to see that Algorithm 2 in this
case leads to system-wide regret of the order O(T

3
4 ) over a time

horizon T .
Let us now consider a dynamic system where users enter and

leave the system over time. In order to use Algorithm 2 to obtain a
sub-linear regret bound, we need to impose some restrictions on the
number of users that have entered the system until time t, which
we denote by κt. It is easy to see that the number of epochs in
which users enter the system must be sub-linear in time to have
sub-linear regret in the system. We restrict the number of users
entering the system κt to be O(tζ) where ζ < 1

2
. We note that this

is similar to the dynamic case in [14] where there is a restriction
on the number of users entering and leaving the system.

Let Kt denote the number of active users at time t. Note that
even in the dynamic scenario, we still retain the assumption of
having Kt ≤M in the system.

Theorem 5: The expected system-wide regret from using Algo-
rithm 2 for T time-slots where (2(r+1)−1)τ ≤ T < (2(r+2)−1)τ

with the number of users entering the system κT ∼ O(T ζ), with
ζ < 1

2
, is given by

E[R(T )] ≤ h′(M,M)
(2(τ + T ))

3
4

2
3
4 − 1

+MκTT
1
2

where h′(M,M) = M

(
5.15
√
M lnM +

√
M

lnM
+ MM+1
√
M lnM

)
and does not depend on T . Thus, E[R(T )] ∼ O(T

3
4 + κTT

1
2 ).

Proof: We have (2(r+1) − 1)τ ≤ T < (2(r+2) − 1)τ which
gives us 2(r+1)τ ≤ τ + T . In epochs where no users enter the
system, the regret can be bound by Theorem 4, and in epochs with
new users, the regret accumulates through the entire epoch. The
epoch length is upper bounded by (2(r+1)τ)

1
2 , since x = 1

2
from

Theorem 3. The regret up to time T bounded as follows:

E[R(T )] ≤ Static case regret +Kt

κT∑
Epoch length

≤ h′(M,M)
(2(τ + T ))

3
4

2
3
4 − 1

+MκT (2r+1τ)
1
2

≤ h′(M,M)
(2(τ + T ))

3
4

2
3
4 − 1

+MκT (τ + T )
1
2 .

Thus, E[R(T )] ∼ O(T
3
4 + κTT

1
2 ), and if κT is O(T ζ), with

ζ < 1
2

, we have sub-linear regret.

VIII. EXPERIMENTS
In this section, we illustrate the performance of our algorithm in

a simple adversarial setting. We consider a non-oblivious adversary,
i.e., an adversary whose rewards do not depend on the users’ reward
history.

We consider a system with known time-horizon T and fixed
number of users K. We choose K = 4 users and M = 7
channels. We set T = 160000, which gives us T

1
2 = 400 time-

slots, β = 0.026, η = 0.025 and γ = 0.194 in Algorithm 1.
The reward distributions for the channels are drawn i.i.d from the
uniform distribution [a, 1] where a for each channel at each time-
slot is drawn i.i.d from the uniform distribution [0.2, 1].

Fig. 1: Accumulated regret as a function of time.

We repeat the experiment 100 times and consider the average
accumulated regret with time. From Figure 1, we see that the regret
grows with time at a rate much lower than T

3
4 , but higher than T

1
2 ,

which is the expected regret in the single user case.
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