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ABSTRACT

An analytical lower bound on uplink channel capacity of
a user in a massive multiple-input multiple-output system
where the channel vector and the covariance matrices of the
users in that cell are unknown is derived in this paper. This
analytical bound enables us to choose appropriate sample
size for covariance matrix estimation to meet the spectral
efficiency requirements. The accurate agreement between
the derived bound and the simulated bound based on random
samples of channel vectors and covariance matrices is shown.

Index Terms— Achievable rate, spectral efficiency, Mas-
sive multiple-input multiple-output (MIMO), covariance esti-
mation, channel estimation, pilot contamination.

1. INTRODUCTION

Increased spectral efficiency through spatial multiplexing
makes massive multiple-input multiple-output (MIMO) sys-
tem, where each base station (BS) has large number of an-
tennas to serve multiple users within the cell, one of the key
technologies for the next generation mobile networks [1–3].
However, knowledge of channel state information (CSI) at
the BS is essential for the communication between the users
and the BS.

A limited number of pilots are used for channel estima-
tion due to finite coherence time and finite coherence band-
width, which results in the pilot contamination problem in
multi-cell scenarios [1]. It has been shown recently that, un-
der certain assumptions on the spatial covariance matrices,
the sum rate for the massive MIMO system is unbounded de-
spite the presence of pilot contamination [4]. However, this
result assumes availability of the individual user covariance
matrices at the BS, which, in practice, are also contaminated.
Several methods have been proposed in recent literature for
estimating the spatial covariance matrices [5–8], and with the
estimated channel and covariance information, bounds on the
channel capacity are numerically studied in these papers.

However closed form expressions for such bounds uti-
lizing estimated covariance matrices are not available in the

literature, to the best of our knowledge. Such bounds can pro-
vide useful insights into the number of observations needed
for estimating the covariance matrices to achieve a target
spectral efficiency (SE).

In this paper, we derive closed form expressions for the
SE in a massive MIMO system with imperfect channel and
covariance matrix estimates at the BS, thereby characterizing
the SE in terms of the number of samples required to estimate
the covariance matrices.

2. SYSTEM MODEL

A massive MIMO system with L cells having K users within
each of them is considered. All the BSs are assumed to have
M antennas each, and all the users have single antenna.

The uplink (UL) channel between the kth user in the lth

cell, indexed as (l, k), and a BS j is denoted as hlk ∈ CM
(the subscript j is dropped for the sake of simplicity), and
is assumed to be a zero mean circularly symmetric complex
Gaussian random vector, denoted as CN (0,Rlk), where Rlk

is the covariance matrix. The channel is assumed to be con-
stant for τc symbols –length of the coherence block, while its
second order statistics are assumed to be constant for τs co-
herence blocks. Cu symbols are used for UL communication
within each coherence block.

The UL received signal Y ∈ CM×Cu in nth coherence
block at jth BS, is given by:

Y[n] =

L∑
l=1

K∑
k=1

√
µhlkx

ᵀ
lk[n] + N[n] (1)

where µ is the transmit power at each user, N ∈ CM×Cu

is the additive white Gaussian noise whose elements are dis-
tributed as CN (0, 1), xlk ∈ CCu is the signal transmitted by
user (l, k) whose elements are distributed as CN (0, 1). It con-
tains the data signal as well as the pilot signals for estimating
the channel and the covariance matrices.

In the following subsections, the pilot structures and esti-
mation techniques for the channel vector and the covariance
matrices are explained.
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2.1. LMMSE Channel Estimation

The BSs and users are assumed to be perfectly synchronized,
and K symbols in each coherence block are dedicated for UL
channel estimation where each user in a cell is allocated a pi-
lot from a set of K orthogonal sequences. Let pk ∈ CK ,
such that pHk pm = Kδkm, be the pilot transmitted by the kth

user in every cell, and Y(p)[n] ∈ CM×K be the received sig-
nal corresponding to pilot transmissions in the nth coherence
block.

The linear minimum mean squared error (LMMSE) es-
timate of the channel from the target user (j, u) in the nth

coherent block is given by:

ĥju[n] = R̂juQ̂
−1
u ĥLSju [n], n = 1, . . . , τs (2)

where R̂ju is the estimated covariance matrix, Q̂u is an esti-
mate of Qu, and

ĥLSju [n] =
1

K
√
µ

Y(p)[n]p∗u, (3)

Qu = E{ĥLSju (ĥLSju )H} =

L−1∑
l=0

Rlu +
1

Kµ
I. (4)

In the following subsection, we describe pilot structure
and estimation techniques for these covariance matrices.

2.2. Covariance Matrix Estimation

Here, a covariance matrix estimation technique using the pilot
structure introduced in [7] for estimating both R̂ju and Q̂u is
described.

An additional set of pilot sequences {φlk[n]}NR
n=1 for es-

timating Rju is transmitted by user (l, k). Then φlk[n] is
the pilot sequence transmitted in nth coherent block, and it
is given by φlk[n] = [φ̄

ᵀ
k, e

jθlnφ̄
ᵀ
k]ᵀ ∈ CCr (2K ≤ Cr <

Cu), and φ̄k is the sub-sequence used by kth user in all the
cells. It is infact a column chosen from Φ where ΦHΦ =
KICr/2. Here also {θln}NR

n=1 is the random phase sequence
generated for all the users in lth cell such that it is independent
of the channel vectors [7]. Furthermore, it is chosen such that
E(ejθln) = 0. These sequences are independently and iden-
tically distributed (i.i.d) over different cells, and are assumed
to be known at corresponding BS and all the users in the cell.

Regularized covariance matrix Rju estimate and its ex-
pectation are given as follows:

R̂ju , αR̈ju + (1− α)Rb, (5)

where R̈ju = 1
NR

∑NR

n=1 sym
(
ĥ
(1)
ju [n](ĥ

(2)
ju [n])H

)
, sym(·) is

defined as sym(A) , 1
2 (A + AH) and

ĥ
(1)
ju [n] = Y(1)[n]

√
µφ̄
∗
u(µφ̄

ᵀ
uφ̄
∗
u)−1

= hju +
∑
l 6=j

hlu +
1

K
√
µ

N(1)[n]φ̄
∗
u, (6)

ĥ
(2)
ju [n] = Y(2)[n]

√
µe−jθjnφ̄

∗
u(µφ̄

ᵀ
uφ̄
∗
u)−1

= hju +
∑
l 6=j

hlue
−jθjn +

1

K
√
µ

N(2)[n]φ̄
∗
ue
−jθjn , (7)

Y(1)[n] and Y(2)[n] are the received signals that correspond
to the first and second sub-sequences of φ, respectively,
N(1)[n] and N(2)[n] are the noise signals that are additive
to first and second pilot sub-sequence, respectively, Rb is
an arbitrary symmetric positive definite bias-matrix, and α
is a design parameter. For later use, it is useful to define
R̄ju , E{R̂ju} = αRju + (1− α)Rb.

For estimating Qu, an additional set of pilots is not re-
quired, but the received signal that corresponds to pilot se-
quence pu can be utilized to compute an unbiased estimator
of Qu, which is given as follows:

Q̂u =
1

NQ

NQ∑
n=1

ĥLSju [n](ĥLSju [n])H . (8)

In the following section, the SE for the UL channel of a
single target user (j, u) is derived. For the derivation, we con-
sider a matched filter receiver combiner, vju[n] = ĥju[n] =

Ŵjuĥ
LS
ju [n] where Ŵju , R̂juQ̂

−1
u . It is assumed that R̂ju,

Q̂u, and ĥLSju [n] are uncorrelated within a coherence block n,
i.e., R̂ju and Q̂u are computed each from a different set of
coherence blocks that does not include n. Furthermore, it is
assumed that NQ > M .

3. UL SPECTRAL EFFICIENCY

To obtain a lower bound on the channel capacity, we assume
that the codeword is spread over multiple realizations of the
covariance estimates. Then, a lower bound on capacity of the
UL channel from user (j, u) to BS j is given by [6]:

Rju =

(
1− K

Cu
− NRCr

Cuτs

)
log2(1 + γu) [bits/s/Hz]

(9)

where γu is given in (10) at the top of the next page and Rs ,
L−1∑
l=0

K−1∑
k=0

Rlk + 1
µI. The expectation taken in all the terms is

over the random matrix Ŵju.
Before deriving the expectation terms of (10), we give

lemmas that will be useful in the derivation. In what follows,
ER represents the expectation over R̂ju, EQ represents ex-
pectation over Q̂u, and E represents expectation over both.

Lemma 1. Given an arbitrary matrix A ∈ CM×M , and
for any mutually independent M -dimensional random vec-
tors h1, h2, and h distributed as CN (0,R1), CN (0,R2),
and CN (0,R), respectively, we have

E{h1h
H
2 Ah2h

H
1 } = R1tr(AR2), (13)

E{hhHAhhH} = RAR + Rtr(AR). (14)
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γu =
|E{tr(ŴH

juRju)}|2

E{tr(ŴjuQuŴH
juRs)}+

L∑
l=1

E{|tr(ŴH
juRlu)|2} − |E{tr(ŴH

juRju)}|2
(10)

E{tr(ŴjuQuŴ
H
juRs)} = κ1tr(W̄juQuW̄

H
juRs) +

α2κ1
2NR

{
Mtr(RsQu) + tr(Wju)tr(RsRju)

}
(11)

E{|tr(ŴH
juRlu)|2} = κ2|tr(W̄H

juRlu)|2 +
α2κ2
2NR

tr(WluQuW
H
luQu) +

α2κ2
2NR

tr(WluRjuW
H
luRju)

+
κ1
NQ

tr(W̄2
juQuW

2
luQu) +

α2κ1
2NQNR

Mtr(W2
luQ

2
u) +

α2κ1
2NQNR

tr(Wju)tr(W2
luQuRju) (12)

Proof. (13) can be derived by splitting the expectation over
h1 and h2. Proof of (14) is straightforward, but it involves
the values of second and fourth order moments of Gaussian
random variables. Thus, it is left to the reader because of
space limitation.

Lemma 2. Given a Hermitian matrix C ∈ CM×M , an arbi-
trary matrix A ∈ CM×M , and a complex Wishart matrix,
X ∈ CM×M , with N degrees of freedom (represented as
CW(N, I)), we have

E
{

[X−1]ij
}

=
[I]ij

N −M
, (15)

E
{

[X−1]ij [X
−1]lk

}
=

[I]ij [I]lk + 1
N−M [I]lj [I]ik

(N −M)2 − 1
, (16)

E{tr(X−2C)} =
N

(N −M)3 − (N −M)
tr(C), (17)

E{|tr(X−1A)|2} =
|tr(A)|2 + 1

N−M tr(AAH)

(N −M)2 − 1
. (18)

Proof. Proof is available in Appendix.

Lemma 3. Given an arbitrary matrix A ∈ CM×M , we have

E{R̈juAR̈ju} = RjuARju +
1

2NR
Qutr(AQu)

+
1

2NR
Rjutr(ARju) (19)

and

E{|tr(R̈juA)|2} = |tr(RjuA)|2 +
1

2NR
tr(AQuA

HQu)

+
1

2NR
tr(ARjuA

HRju) (20)

Proof. Proof of this lemma uses Lemma 1 and is presented in
Appendix.

Now we are ready to formulate the key theorem.

Theorem 1. The signal component of (10) is given by

Etr{ŴH
juRju} =

NQ
NQ −M

tr(W̄H
juRju). (21)

The first and second terms of the denominator in (10) are
given in (11) and (12) at the top of this page, where κ1 =
NQκ2/(NQ −M), κ2 = N2

Q/((NQ −M)2 − 1), W̄ju ,
R̄juQ

−1
u , and Wlu = RluQ

−1
u .

Proof. We define a matrix Q̃ju as follows:

Q̃ju , NQ(Q
− 1

2
ju Q̂uQ

− 1
2

ju ). (22)

It can be seen that Q̃ju is a Wishart matrix distributed as
W(NQ, I). Using Ŵju = R̂juQ̂

−1
u and (22), the numera-

tor term of (10) can be written as:

Etr{ŴH
juRju} = NQEtr{Q−

1
2

ju Q̃−1ju Q
− 1

2
ju R̂juRju}. (23)

By taking direct expectation over R̂ju in (23) and also using
Lemma 2, (21) can be obtained.

Proof of (11) and (12) is as follows. By substituting
Ŵju = R̂juQ̂

−1
u and (22) into the first and second de-

nominator terms of (10) and by using Lemma 2, we get the
following equations

Etr{ŴjuQuŴ
H
juRs} = κ1ERtr{Q−1u R̂juRsR̂ju}, (24)

E{|tr(ŴH
juRlu)|2} = κ2ER{|tr(Q−1u R̂juRlu)|2}

+
κ1
NQ

ERtr{Q−1u R̂juRluQ
−1
u RluR̂ju} (25)

By using Lemma 3, and by substituting (5) into (24) and (25),
we get (11) and (12), respectively.
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Fig. 1. UL SE of a user in massive MIMO system

4. SIMULATIONS

We consider a massive MIMO system with L = 7 cells each
having K = 10 users, and the number of antennas at the BS
is M = 100. The BSs are separated 300m and the users are
uniformly located in a circle of radius 120m from the BS. The
signal to noise ratio of the received signal from a user that is
at a distance d is given by 78.6 − 37.6 log10 d. In Fig 1, we
compare SE of a user in the central cell for the case of known
covariance matrices, theoretical lower bound on channel ca-
pacity for the estimated covariance case and simulated SE for
the case of estimated covariance matrices.

Number of UL resources used in a coherence block is
chosen to be Cu = 100 symbols, and second order statis-
tics are assumed to be constant for τs = 25000 coherence
blocks. The transmit power of the target is µ = 1. Addi-
tionally, we choose Cr = 2K symbols, NQ = NR (> M ),
α = 0.95, and Rb = I. Sample averaging for all the expecta-
tion terms is computed for 500 iterations for different values
of NR = (170, 850, 1700, 3400, 4250).

It can be seen from Fig 1 that the theoretical achievable
rate for the case of unknown covariance matrix asymptotically
approaches the SE for the known covariance case. Also, the
simulated SE matches the theoretical values.

5. CONCLUSION

An analytical expression for the SE of a user in a massive
MIMO system is derived for the case when the matched fil-
ter receiver combiner uses estimated channel covariance ma-
trices and estimated channel vector. The simulation results
matched that obtained by the theoretical expression derived
in this paper. The accurate agreement between the derived
analytical bound for the SE and the results of simulations is
demonstrated.

6. APPENDIX

Proof of Lemma 2. Proofs of (15) and (16) are given in [9].
Using eigen value decomposition C = UΛUH and de-

noting X̃ = UHXU ∼ W(N, I), (17) can be proved as fol-
lows:

Etr{X−2C} = Etr{X̃−2Λ} =

M∑
i=1

[E{X̃−2}]ii[Λ]ii

= [E{X̃−2}]11tr(Λ) =

M∑
j=1

E
{

[X̃−1]1j [X̃
−1]j1

}
tr(C)

=
N

(N −M)3 − (N −M)
tr(C).

The above derivation uses the fact that [E{X̃−2}]ii is same
for all i ∈ {1 . . .M}.

For (18), E{|tr(X−1A)|2} is expanded as follows:

E{|tr(X−1A)|2} =

M∑
p,q,r,s=1

E{[X−1]pq[X
−1]sr}[A]qp[A

H ]rs

=

M∑
p=1

M∑
s=1

E{[X−1]pp[X
−1]ss}[A]pp[A

H ]ss

+

M∑
p=1

M∑
s=1

E{[X−1]ps[X
−1]sp}[A]sp[A

H ]ps.

Using (16), the above equation can be re-written as in (18).

Proof of Lemma 3. Let us define a pair of mutually inde-
pendent random vectors g

(1)
jju[n] , ĥ

(1)
jju[n] − hju and

g
(2)
jju[n] , ĥ

(2)
jju[n] − hju. Their covariance matrices are

identically equal to Qu −Rju. Additionally, we also de-
fine mutually independent set of matrices as R̆ju[n] ,

sym(ĥ
(1)
ju [n](ĥ

(2)
ju [n])H), ∀n ∈ {1, . . . NR} such that R̈ju =

1
NR

∑NR

n=1 R̆ju[n].

Using the definitions of g
(1)
jju[n] and g

(2)
jju[n], and also

Lemma 1, it can be shown that

E{R̆ju[n]AR̆ju[n]} = RjuARju +
1

2
Qutr(AQu)

+
1

2
Rjutr(ARju), ∀n = 1 to NR, (26)

and

E{|tr(R̆ju[n]A)|2} = |tr(RjuA)|2 +
1

2
tr(AQuA

HQu)

+
1

2
tr(ARjuA

HRju), ∀n = 1 to NR. (27)

Finally, along with the equation R̈ju = 1
NR

∑NR

n=1 R̆ju[n],
(26) and (27) will result in (19) and (20), respectively.
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