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ABSTRACT

This paper studies the transmit power optimization in a multi-cell
massive multiple-input multiple-output (MIMO) system. To over-
come the scalability issue of network-wide max-min fairness (NW-
MMF), we propose a novel power control (PC) scheme. This scheme
maximizes the geometric mean (GM) of the per-cell max-min spec-
tral efficiency (SE). To solve this new optimization problem, we
prove that it can be rewritten in a convex form and then solved using
standard tools. To provide a fair comparison with the available utility
functions in the literature, we solve the network-wide proportional
fairness (NW-PF) PC as well. The NW-PF focuses on maximizing
the sum SE, thereby ignoring fairness, but gives some extra attention
to the weakest users. The simulation results highlight the benefits of
our model which is balancing between NW-PF and NW-MMF.

Index Terms— Massive MIMO, power control, max-min fair-
ness, proportional fairness.

1. INTRODUCTION

Massive MIMO [1] is a key technology in 5G [2, 3]. It refers to a
system in which the cellular base stations (BSs) are equipped with
very many antennas. Massive MIMO supports spatial multiplexing
of many users, beamforming, and spatial interference mitigation.
It enhances the spectral and energy efficiency compared with con-
ventional MIMO setups. Unlike conventional cellular systems, the
power control (PC) in massive MIMO systems benefits from chan-
nel hardening, namely that the small-scale fading average out when
having many antennas [4]. It means that in massive MIMO, one
can optimize the data transmission power based on the large-scale
fading coefficients only, instead of optimizing with respect to the
small-scale fading coefficients, which would require very rapid PC
updates. PC schemes that maximize different utility functions have
been considered in the literature [4–11]. Max-min fairness (MMF)
is one of the classical utility functions and it is studied for different
setups in [12–16]. It provides the same quality of service at all user
locations, which is a highly desirable feature in future systems.

Applying the MMF utility to a multi-cell massive MIMO net-
work leads to a scalability issue. This is due to the fact that when
increasing the number of cells and active users in the network, the
probability of having a user with an extremely poor channel gets
higher due to shadow fading. Therefore, network-wide MMF (NW-
MMF) optimization leads to the situation in which all users in the
network suffer from the weak channel of the worst user. Conse-
quently, all users get low spectral efficiency (SE). Increasing the
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number of cells to infinity will eventually result in zero SE for all
users in the network. This is a major problem that was pointed out
in [4, 17], but seldom discussed in the academic literature where the
simulation setups are often too small to observe overly small SEs.
Nevertheless, the NW-MMF schemes proposed in the literature are
unsuitable for providing fairness in cellular networks.

1.1. Related works

A heuristic approach to resolve the scalability issue of NW-MMF
was considered in [17, Ch. 6]. The idea is to maximize the mini-
mum SE within each cell and then balance these values across cells.
Hence, the weak users have a lower impact on the whole network
performance and mostly affect their own cells. The proposed algo-
rithm in [17] is computationally efficient, but relies on approxima-
tions and there is no guarantee of optimality. Inspired by this algo-
rithm, we are proposing a new utility function that can be optimized
rigorously: maximization of the geometric mean (GM) of the max-
min SEs in each of the cells. The network-wide proportional fairness
(NW-PF) utility was considered in [4] to balance between sum SE
optimization and fairness. In simulations, it outperforms NW-MMF
in terms of fairness for most users, but it gives no fairness guarantees
except for giving non-zero SE to every user.

1.2. Contributions

• We propose a novel PC scheme that solves the GM per-cell
MMF problem. We then reformulate the problem to reach a
convex formulation that can be solved to global optimality in
an efficient way. The new scheme outperforms the heuristic
scheme in [17] in some cases and gives a comparable perfor-
mance in other cases.

• To further investigate the benefits of the proposed PC scheme,
we define and solve two more power control schemes for the
multi-cell scenario at hand: NW-MMF and NW-PF. The nu-
merical results show that the proposed PC scheme combines
the benefits of NW-MMF and NW-PF without suffering from
the scalability issue of NW-MMF.

2. SYSTEM MODEL

In this paper, we consider a multi-cell massive MIMO setup that con-
sists of L cells, each associated with one BS. Each BS is equipped
with M antennas and is serving K single-antenna users. In the pro-
posed setup, hll′,k ∼ CN (0, βll′,kIM ) is the channel response be-
tween BS l and user k in cell l′, where βll′,k ≥ 0 is the corresponding
large-scale fading coefficient. We use the conventional block fading
to model the randomness of the channels over time and frequency.

4499978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



SINRul
lk =

Mρulγ
l
lkηlk

1 + ρul

∑
l′∈Pl

K∑
k′=1

βll′k′ηl′k′ + ρul

∑
l′ /∈Pl

K∑
k′=1

βll′k′ηl′k′ +Mρul

∑
l′∈Pl\{l}

γll′kηl′k

(4)

SINRdl
lk =

Mρdlγ
l
lkηlk

1 + ρdl

∑
l′∈Pl

βl
′
lk

(
K∑
k′=1

ηl′k′

)
+ ρdl

∑
l′ /∈Pl

βl
′
lk

(
K∑
k′=1

ηl′k′

)
+Mρdl

∑
l′∈Pl\{l}

γl
′
lkηl′k

(5)

The coherence block of a channel is defined as the time-frequency
block in which the channel response is frequency-flat and static in
time. The channels change independently from one block to another
according to a stationary ergodic random process. The number of
samples per coherence block is given by τc = TcBc, where Tc is the
coherence time and Bc is the coherence bandwidth [17, Ch. 2], [4,
Ch. 2].

Therefore, it is assumed that channel estimation is carried out at
each BS once per coherence block. Each user transmits a pilot se-
quence from a predefined set of orthogonal pilots. τp samples (with
τp ≤ τc) are dedicated for pilot transmission and the remaining sam-
ples will be utilized for uplink (UL) and downlink (DL) data trans-
mission. The channel estimation phase follows the standard mini-
mum mean square error (MMSE) estimation approach in the litera-
ture, e.g., [4, 17, 18] and the derivation is omitted here. The MMSE
estimate of hll′,k is denoted as ĥll′,k ∼ CN (0, γll′,kIM ), where γll′,k
is the corresponding variance:

γll′,k =
τppul

(
βll′,k

)2
1 + τpρul

∑
l′′∈Pl

βll′′,k
, l′ ∈ Pl, (1)

where Pl is set of the BSs that are using the same K pilot sequences
as BS l. If two BSs are sharing pilots, user k in the respective cells
use identical pilots for k = 1, . . . ,K.

We assume that each BS performs maximum ratio processing
during the data transmission phase. The detailed derivation of the
SEs of both UL and DL data transmission for multi-cell massive
MIMO setup is provided in [4, 17] and is therefore omitted here.
The ergodic SE of user k in cell l is given by [4, Th. 4.4]
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where SINRul
lk, given in (4) at the top of the page, is the effective UL

SINR of user k in cell l. For DL data transmission, the ergodic SE
of user k in cell l is

SEdl
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)
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where the effective DL SINR for the case of maximum ratio process-
ing at the BSs is provided in (5) at the top of the page [17, Ch. 4], ρul

and ρdl are UL and DL normalized transmit powers, respectively. In
both UL and DL, ηlk ∈ [0, 1] is the PC coefficient of user k in cell l
and these will be optimization variables in this paper.

3. PROBLEM FORMULATION

This section motivates and defines the problem formulation. Specifi-
cally, we will propose a new multi-cell MMF PC scheme. In order to
evaluate and compare our proposed scheme with the state-of-the-art,

we also define and solve two more optimization problems. The first
one is NW-MMF. Notice that MMF is the ideal utility function in a
network where everyone has the same demand for data. It provides
equal performance among all the users by prioritizing the user with
the weakest channels. However, this scheme is not scalable and by
increasing the number of cells in the network, we may end up with
zero SE for all users—uniform but bad performance for everyone. It
happens because the probability of having a user in deep fade due to
shadow fading increases and this penalizes the whole network. More
precisely, when βll,k → 0 for one user, the SE goes to zero for all
the users. The MMF problem for UL data transmission is defined
as [4, Ch. 7]

maximize
{ηlk}

min
l,k

SINRul
lk

subject to 0 ≤ ηlk ≤ 1, ∀ l, k.
(6)

The power constraints reflect that each user has its own power ampli-
fier and can transmit at any power ρulηlk from 0 to ρul. Note that the
optimization problem for the DL is similar to (6) but using SINRdl

lk

and different power constraints:
∑K
k=1 ηlk ≤ 1, ∀l since every BS

can allocate its maximum power ρdl freely between its users so that
user k in cell l is allocated ρdlηlk.

3.1. Geometric-mean per-cell max-min fairness

To solve the scalability issue of NW-MMF, we formulate a new op-
timization problem in which the optimization objective is the GM of
per-cell MMF of SINRs of the cells. The optimization problem for
the UL data transmission is

maximize
{tl},{ηlk}

L∏
l=1

log2 (1 + ε+ tl)

subject to 0 ≤ ηlk ≤ 1,∀ l, k,

SINRul
lk ≥ tl, ∀ l, k,

(7)

where tl is the minimum SINR of cell l and ε > 0 is a small control
parameter that prevents the utility from being identically zero when
one cell has a user with a very poor channel (note that zero SINR can
happen in cell l when mink(β

l
l,k) = 0). We also define 1ε = 1 + ε

to simplify the notation. The first constraint in (7) deal with the
PC coefficients for the UL data transmission of users in each cell,
and the second constraint is to perform MMF on the SINR of each
cell. This constraint guarantees to give the same SINR to every user
within a cell, but the SINR value can be different from other cells.
Therefore, a cell where all users have poor channels will not prevent
the users in other cells from achieving higher SINRs. The GM utility
of the per-cell SEs provides proportional fairness between cells.

This optimization problem is the DL counterpart to (7):
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The differences from the UL are the SINR expressions being used
and the power constraints, which are now reflecting the fact that each
BS can distribute its power arbitrarily between its users.

3.2. Network-wide Proportional Fairness

Next, we consider the alternative network utility function with the
product of the SINRs. Maximizing this objective provides NW-PF
with respect to the SINRs of the users in the network. It is shown
in [4, Sec. 7.1] that this objective is a lower bound on the sum SE of
the network, but with greater emphasis on fairness since the utility is
zero if any user gets zero SE. We can write the optimization problem
for UL data transmission as
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K∏
k=1

tlk

subject to 0 ≤ ηlk ≤ 1,∀l, k,
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(9)

where tlk indicates the effective SINR of user k located at cell l. The
corresponding DL optimization problem is formulated as
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The difference between this optimization problem and our new pro-
posed formulation is that this optimization problem deals with each
user individually, so there will be large SE differences within a cell.

4. SOLUTIONS TO THE PROPOSED PROBLEMS

In this section, we provide solutions to the optimization problems
introduced in Section 3. First, we solve the proposed GM per-cell
MMF PC for the UL data transmission given in (7). We can rewrite
the optimization problem as

maximize
{tl},{ηlk}

L∑
l=1

log (log2 (1ε + tl))

subject to 0 ≤ ηlk ≤ 1, ∀ l, k,

SINRul
lk ≥ tl, ∀ l, k,

(11)

since the natural logarithm is a monotonically increasing function.
The problems are identical in terms of having the same optimal so-
lution. Thus, the product of the SE of the cells is written as the sum
of the logarithms of these SEs. By the change of variables

tl = et̄l , ηlk = eη̄lk , (12)

we obtain the equivalent reformulated problem provided in (13). We
observe that the constraints can be rewritten as
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l
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After taking the logarithm of both sides, we have a log-sum-
exponential function, which is a convex function less than or equal
to a constant. This is a convex constraint. Therefore the only con-
cern is whether the objective function in (13) is concave or not. We
provide the following theorem that shows that the objective function
is a concave function and thus (13) is a convex problem. Note that
solving the optimization problem for the DL case follows the same
steps as UL, hence it is omitted to avoid repetition.

Theorem 1. The function f(x) = log (log (1ε + ex)) is a concave
function with respect to x for x ≥ 0 and for any ε > 0.

Proof. The first derivative of f(x) is
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1
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1
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Now we define g(x) = ex − log(1 + ex) and we have

g′(x) = ex − ex

1ε + ex
= ex

(
1− 1

1ε + ex

)
≥ 0. (17)

This means that g(x) is monotonically increasing in x, we also have
g(0) > 0. Therefore we have shown that g(x) > 0, ∀x ≥ 0. This
implies f ′′(x) ≤ 0, ∀x ≥ 0. Therefore, we have proved that f(x) =
log(log(1ε + ex)) is a concave function in x.

As the objective is a sum of concave functions, it is also jointly
concave. Hence, we have shown that (7) is a convex problem and it
follows that every stationary point is also a global optimum solution.
Therefore any algorithm that converges to a stationary point can be
applied to solve the problem. In the simulation part, we use the
interior point algorithm within the fmincon solver in MATLAB.

To solve the NW-MMF optimization problems given in (6) and
(9) one can write it on epigraph form and solve linear feasibility
optimization problems using the bisection algorithm. The details of
the bisection algorithm can be found in [4, Ch. 7].

The NW-PF problem for both UL and DL data transmission,
given in (9) and (10), are geometric problems [19, 20]. The detailed
proof is provided in [4, Th. 7.2]. These optimization problems can
be solved efficiently by using standard convex optimization solvers,
for example, we used CVX [21] in the simulation part.
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Fig. 1. Uplink data transmission.

5. NUMERICAL ANALYSIS

In this section, we provide a numerical comparison of the three
PC algorithms provided in Section 3. In addition, we consider the
heuristic per-cell max-min algorithm proposed in [17, Ch. 6]. We
consider a multi-cell massive MIMO setup consisting of 9 cells and
we use wrap-around to avoid edge effects. Each BS is equipped
with M = 100 antennas. We assume a square grid layout where
each square has a BS in the center and all of the BSs are located
in a 1 km2 area. Furthermore, each BS serves two users that are
randomly distributed with uniform distribution in the coverage area
of the BS. We assume a reuse factor of one, which means all the
BSs are in the set Pl. The bandwidth is 20MHz and each coherence
block contains 200 symbols. The large-scale fading coefficients are
modeled as [4]

βll′,k [dB] = −35− 36.7 log10

(
dll′,k/1m

)
+ F ll′,k, (18)

where dll′,k is distance between user k located in cell l′ to BS l.
In addition, F ll′,k is shadow fading generated from a log-normal
distribution with standard deviation 8 dB . The noise variance is
set to −94 dBm and the maximum transmit power of the users
is 200mW for UL data transmission. The maximum transmit power
of the BS is selected to be 40W. The simulations consider 2000
realizations, where the users are dropped randomly in each cell.
Figs.1(a) and 2(a) plot the cumulative distribution function (CDF) of
the SE of all the users for UL and DL data transmission, respectively.

In these figures, it can be seen that NW-PF gives higher SE than
the proposed GM of per-cell MMF for most users but not in the
lower tail which is the important part for delivering fairness and uni-
form performance. The 10% weakest users in the UL and the 12%
weakest users in the DL get higher SE when using the proposed GM
per-cell MMF. The proposed scheme is comparable to NW-MMF in
the lower tail (i.e., the weakest cell in the network) but substantially
better for all other cells. If we do a one-to-one comparison for all the
users and calculate the percentage of users that get better SE with
NW-MMF than with NW-PF or the proposed scheme, we get the re-
sults provided in Table 1. These numbers show that one fifth of the
users get higher SE, but we also see from the CDF curves that their
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Fig. 2. Downlink data transmission.

SE gains are tiny, thus percentage values like this need to be taken
with a grain of salt. Another observation is that, in both figures, the
heuristic scheme from [17, Ch. 6] provides similar performance as
our proposed method in the DL, but the proposed method generally
gives higher SE. In Fig. 1(b) and 2(b), we plot the CDF of the sum
SE of the whole network. We see that the NW-PF scheme performs
the best in terms of sum SE as it can be seen as an approximation to
the sum SE maximization in the high SINR regime.

6. CONCLUSION

In this paper, we analyzed different power control schemes that tar-
get fairness in multi-cell massive MIMO systems. We proposed to
maximize the geometric mean of the per-cell max-min SEs. This
approach is not subject to the same scalability issues as the conven-
tional NW-MMF approach, which has received much attention in the
literature. We solved the new problem formulation to global optimal-
ity and achieved better or comparable performance as the previous
heuristic scheme in [17] that also targeted to resolve the scalability
issue of NW-MMF. Furthermore, our proposed approach provides
more fairness towards weak users in comparison with NW-PF.

Table 1. Percentage of users getting better SE using NW-MMF.
NW-PF GM per-cell MMF

Uplink 14% 17%
Downlink 18% 22%
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