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ABSTRACT

Thermal vision systems based on low-cost IR array sensors
are becoming attractive in many smart living scenarios. This
paper proposes a Bayesian framework for recognition and dis-
crimination of body motions based on real-time analysis of
thermal signatures. Unlike conventional frame-based meth-
ods, the proposed approach exploits a statistical model for the
extraction of body-induced thermal signatures and a mobility
model for tracking multi-body motions inside an indoor area.
This approach prevents typical detection problems and can
be also used in presence of interfering thermal sources such
as heaters, radiators and other thermal devices. The Bayesian
method is verified experimentally for ceiling mounted sensors
and shows high accuracy and robustness even in cases where
thermal signatures are closer to the ambient temperature.

Index Terms— Infrared Array Sensors, Bayesian filter-
ing, Body Tracking, Passive Detection, Internet of Things

1. INTRODUCTION

The use of thermal sensors for human body sensing [1] is
becoming attractive in many IoT-relevant scenarios, such as
smart spaces [2, 3], assisted living [4, 5], and industrial au-
tomation [6]. Thermal vision and related computing tools
enable the possibility of analyzing body configurations, ac-
tivities and motion patterns, without being limited by privacy
issues since no specific person can be recognized through the
analysis of thermal frames. In addition to low invasiveness,
IR (Infrared) arrays overcome [7] some problems related to
vision sensors, since humans have a distinctive thermal profile
compared to objects, and sensor data does not depend on light
conditions. Here, we propose to use low-resolution thermal
sensors for occupancy estimation. In particular, we address
the problem of tracking the location of an arbitrary number of
individuals (i.e., targets) that can freely move inside the mon-
itored area. The thermal sensors used here consist of low-cost
IR sensor arrays similar to [8, 9, 10] that are characterized
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Fig. 1. Layout example and noisy temperature readings.

by a high temporal and spatial resolution. Signal processing
methods are then applied to raw thermal measurements to ob-
tain an occupancy estimate in real-time. Existing techniques
are mostly based on frame-based computer vision approaches
that consider time-slices (frames) of raw temperature mea-
surements individually, and range from K-nearest neighbor
(K-NN) [8, 10], decision trees [11, 12], Kalman filtering [13],
support vector machines [3, 14] to adaptive thresholding [15].
A Bayesian technique has been proposed in [16], however the
problem formulation is limited therein to a single IR sensor.

This paper focuses on the analysis, design and implemen-
tation of a Bayesian filtering tool that models body-induced
thermal signatures, analyzes and tracks body movements
through a sequence of frames. Compared to conventional
frame-based methods [8] [9], the proposed toolkit learns a
statistical model for the extraction of body-induced thermal
signatures from noisy data; then it applies a mobility model
for tracking multi-body motions. The space-time Bayesian
filtering approach is able to track an arbitrary number of
targets by considering both current and past raw thermal im-
ages and outputs the probability of occupancy in selected
locations. The use of a motion model as well as the process-
ing of backlogs of thermal images prevent typical detection
problems related with the temporal disappearance of the hu-
man body [15] that are often experienced in practical ceiling
mounting arrangements. An adaptive background subtraction
method is also adopted to filter out noisy thermal sources.
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2. SYSTEM MODEL

We introduce here a statistical model for the raw thermal data
captured by the sensor array. This model can serve as a gen-
eral framework for application to multi-sensor deployments
and large IR arrays. In what follows, a ceiling-mounted sen-
sor array is considered, being the most interesting and practi-
cal deployment scenario for smart-living applications. How-
ever, other placements might also fit as well. We consider
a frame yt of M received noisy temperature measurements
yt = [yt,1, ..., yt,M ]T at time t that collects the temperature
readings from the M thermopile elements (in 1D or 2D grid
format). Focusing on occupancy pattern estimation, we di-
vide the area X within the sensor array field-of-view into a
grid consisting of K ≤ M physical regions of interest. Each
region k (with 1 ≤ k ≤ K) is defined over a 2D space
Xk characterized by its barycenter xk used to drawn posi-
tioning information. We tackle the problem of estimating the
occupancy in each region rt = [rt,1, ..., rt,k, ..., rt,K ]T with
rt,k ∈ [0, 1] that provides a binary information about occu-
pancy at time t within the k-th region. Noisy temperature
readings are assumed to depend linearly on the pattern rt as

yt = H× rt +wt (1)

where the M × K matrix H maps the thermal signatures
(temperature increases) onto the corresponding positions
of interest and wt models the noisy background obtained
in the empty environment. The background M × 1 vec-
tor wt = [wt,1, ..., wt,M ]T conveys information about noisy
heat-sources that are not caused by body movements but char-
acterize the empty space. This is modeled here as multivariate
Gaussian wt ∼ N (µ,C) with average µ and covariance C.

2.1. Bayesian model learning

Learning of model parameters for body-induced heat sig-
natures H and background/ambient temperature {µ,C}
in (1) is based on the conditional maximum likelihood
Pr [yt | rt;H, {µ,C}] estimator. Modeling of ambient tem-
perature {µ,C} is based on thermal measurements in the
empty space and estimation of covariance terms uses an L2
regularization. The presence of external thermal sources im-
pair the body motion tracking as causing false or duplicated
targets. Therefore, an adaptive background removal method is
proposed and validated in Sect. 4. Heat signatures H are de-
scribed in terms of temperature increases and are function of
specific multi-body motion patterns. Therefore, it is reason-
able to assume that the elementsHm,k of matrix H are intrin-
sically sparse: to capture this effect, we force the linear coef-
ficients of matrix H to have a Laplace prior distribution with
zero mean and unit variance Pr(Hm,k) ∝ exp(−

√
2 |Hm,k|).

This Lasso-type regularization [17] is effective in modeling
sparse heat signatures as observed in real data. We assume
N labeled examples

(
r
(i)
t ,y

(i)
t

)
, where each example y

(i)
t ,

Fig. 2. Least-Squares (LS) vs. Lasso-type regularization and
corresponding model simplification for model H estimation.

i = 1, ..., N , corresponds to a known occupancy pattern r
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t

during training. The model H is thus estimated as
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i=1 log Pr
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where λ is the regularization parameter. For Gaussian back-

ground, it is Ĥ = argminH
∑N
i=1

∥∥∥ỹ(i)
t −H× r

(i)
t
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C

+

λ
∑M
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∑K
k=1 |Hm,k| and equation (2) reduces to the LS

method with ỹ
(i)
t = yt − µ being the noisy measure-

ments after background µ = [µ1, ..., µM ]T subtraction.
‖y‖C = yTC−1y denotes weighting by covariance C. The
regularization sets matrix H to have a sparse representation.

2.2. Model simplification

Model simplification is applied in this section to suppress
small or irrelevant thermal signatures and, in turn, to provide
an estimate Ĥ that is less sensitive to training impairments.
Considering the k-th area, i.e., column k of matrix Ĥ, the cor-
responding non-zero elements ĥk =

{
Ĥh,k : ∀h, Ĥh,k > 0

}
reflect the subset yt,k =

{
yt,h : ∀h, Ĥh,k > 0

}
of the array

elements that are more sensitive to the body movements in-
side k. These terms are, in turn, thermal signatures, or fea-
tures, that correspond to a body moving in the considered
area k. We apply a de-featuring stage where each thermal
signature ĥk is passed through an optimized binary function,
namely ĥ

(S)
k =

{
Ĥ

(S)
h,k

}
with

Ĥ
(S)
h,k =

{
hτ , Ĥh,k > τ

0, Ĥh,k ≤ τ
(3)
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Fig. 3. Optimized threshold τ and body induced thermal sig-
nature hτ for typical 3 m ceiling mounted sensors.

where hτ models the average body-induced thermal increase
compared to ambient temperature while τ is a sensitivity
threshold. Assuming K = 12 positions, Fig. 2 (from
left to right) compares the estimated model Ĥ using least-
squares (without regularization), the resulting model using
a Lasso-type prior and, finally, the corresponding model de-
featuring. Considering typical ceiling mounted (3 m) sensors
(see Sect. 4 for details) and a typical indoor room temper-
ature (25◦C), optimal threshold should be generally set as
τ < 0.4◦C, while body-induced thermal increase falls in the
range hτ = 1.1◦C ÷ 1.4◦C. Optimization is depicted in
Fig. 3, where the optimal model parameter range has been
selected to maximize the motion tracking accuracy.

3. BAYESIAN FILTERING

We assume that the binary vector rt, describing the occu-
pancy pattern in the monitored area, is an Hidden Markov
process. We track the body occupancy in each position by
updating, for all monitored regions, the a posteriori proba-
bility conditioned on all observed temperature measurements
Yt = [y1, ...,yt]

T taken up to time t

Pr(rt | Yt)=
K∏
k=1

Pr (rt,k | Yt) . (4)

Here, the Bayesian filtering approach is used to track the oc-
cupancy pattern iteratively and independently in each area.
The a posteriori can be thus written as

Pr(rt,k | Yt) ∝ Pr
(
yt | rt,k; Ĥ

)
× Pr (rt,k | Yt−1) . (5)

The conditional likelihood Pr
(
yt | rt,k; Ĥ

)
is based on

model (1) while the estimated linear terms Ĥ are obtained by
regularization according to (2) and model de-featuring (3) to

Fig. 4. Multi-body tracking: occupancy probability Pr(rt |
Yt) when 2 up to 4 individuals are traversing the monitored
area (see the trajectory on top), moving at random speed.

extract the body-induced thermal signatures ĥ(S)
k . It is

Pr
(
yt | rt,k = 1; Ĥ

)
∼ N (ĥ

(S)
k +µk,Ck)

Pr
(
yt | rt,k = 0; Ĥ

)
∼ N (µk,Ck)

(6)

where µk and Ck are defined as µk =
{
µh : ∀h, Ĥh,k > 0

}
and Ck = Et[(wt,k − µk)(wt,k − µk)

T ] while wt,k ={
wt,h : ∀h, Ĥh,k > 0

}
. In (5), the a priori probability

Pr (rt,k | Yt−1) is updated iteratively as

Pr (rt,k | Yt−1) =

∫
Pr(rt−1 | Yt−1) Pr(rt,k | rt−1)drt−1.

(7)
The transition probability Pr(rt,k | rt−1) is drawn from a
motion model that tracks an arbitrary number of individuals.
Based on occupancy information at time t−1, we first recon-
struct the subset of occupied regions at time t − 1, Kt−1 =
{k : rt−1,k = 1} . Then, we assign the position of each indi-
vidual at time t − 1 as the corresponding barycenter xt−1 =
xh with respect to the occupied region h ∈ Kt−1 as

Pr(rt,k=1 |rt−1)=

∑
h∈Kt−1

∫
Xk

Pr(xt=xk |xt−1=xh)dxt∑
h∈Kt−1

∫
X Pr(xt=xk |xt−1=xh)dxt

,

(8)
with Pr(rt,k = 0 | rt−1) = 1 − Pr(rt,k = 1 | rt−1). No-
tice that transition probability in (8) can be pre-computed for
all 2K × 2K combinations. Target movements in each re-
gion are modeled by a standard 2D Gaussian random walk
[18] that rules the probability function Pr(xt | xt−1) for each
individual subject. For modeling random movements xt =
xt−1 + vt, we use a Gaussian driving process vt correspond-
ing to the maximum human body speed (typically 1 m/s). Ac-
cording to (5), for the iterative evaluation of Pr(rt,k | Yt), a
subject is detected in the k-th area if Pr(rt,k | Yt) ≥ η, with
threshold η = 0.65 calibrated from training. Finally, imaging
over Pr(rt | Yt) in (4) can be used to detect motions.
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Fig. 5. Validation of Bayesian tracking tool with adaptive background removal. A fixed external thermal source is located in
location 8 and generating a time-varying heat signature.

4. EXPERIMENTAL DATA AND VALIDATION

The experimental validation scenario exploits an 8 × 8
(M = 64) thermopile sensor array (Panasonic Grid-EYE
model [10]) that can monitor a 2.5 m square area when
mounted on a 3.0 m ceiling (faced down). Ceiling mounting
is chosen being the most interesting and practical setup for
IoT based applications. Fig. 1 sketches the layout of the de-
tection area. The observed scene is divided up into K = 12
areas that form a regular grid of 0.5 m, while the propose
Bayesian filtering tool is designed to evaluate the occupancy
probabilities for all areas. The sensor array is configured for a
sampling period equal to4t = 100 ms and to detect absolute
temperatures yt by IR measurements modeled as in (1). Dur-
ing initialization, the system performs the estimation of the
background parameters µk and Ck in (6) for each location
k. Then eqs. (1)-(3) are used to identify the body-induced
thermal signatures ĥk (λ = 41 is used for optimization).
Finally, Bayesian filtering is used for real-time evaluation of
unknown (unlabeled) data. For performance evaluation, we
deployed also labeled landmarks in selected positions.

In Fig. 4, we show the performance evaluation of the body
motion tracking system in a scenario with close body occu-
pants ranging from 2 to 4 and moving according to the pattern
illustrated in the superimposed sub-figures. Considering the
monitored regions and their locations, the sensor can track
people with an accuracy of about 0.5 m. Overall, detection
and discrimination of occupancy within the K selected re-
gions has high accuracy, greater than 99%, that is in line with
typical requirements of smart-home applications.

A well-known limitation of thermal vision systems is their
sensitivity to ambient thermal sources [12]. These sources im-
pair human body tracking causing duplicates and false alarms
as they can temporarily obscure body motions close by. Given
that thermal sources are typically slowly varying compared

to body motions, we apply a re-estimation of the parame-
ters µk and Ck, that are used for each region k in the con-
ditional likelihoods (6), by using a multivariate exponentially
weighted moving average (MEWMA) and covariance matrix
(MEWMC) [19], respectively. At time t, parameters µk =

µ
(t)
k and C

(t)
k are defined by recursion as µ(t)

k = αµ
(t−1)
k +

(1− α)yt,k and C
(t)
k = ςC

(t−T )
k + (1−ς)

T−1

T−1∑
i=0

ỹt−i,kỹ
T
t−i,k,

where ỹt,k = yt,k − µ
(t)
k and T = 5 samples. The smooth-

ing constants α = 0.99 and ς = 0.995 are used to tune to
different changes caused by typical devices (e.g., air condi-
tioners, heaters and radiators). In Fig. 5, we validate the pro-
posed Bayesian tracking tool with adaptive background re-
moval. A fixed thermal source (e.g., a small radiator) is de-
ployed within the region k = 8 where it generates a localized
but time-varying heat signature. A human body is moving
by following a given (repeated) pattern. After a transient pe-
riod of about 45 samples (4.5 s), the system is effectively able
to learn the new background and filter out the external source.
Body tracking is still accurate (97%) in the surrounding of the
locations k = 4, 5, 6 close to the area k = 8, as combining
frame based detection with the motion model shown in (8).

5. CONCLUDING REMARKS

This paper proposes a Bayesian tool for tracking multiple
bodies through real-time analysis of thermal signatures ex-
tracted from an IR sensor array. The proposed statistical
model is validated experimentally to represent body-induced
thermal signatures. Bayesian filtering combined with adap-
tive background subtraction is an effective tool even in pres-
ence of bodies moving close to ambient thermal sources.
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