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ABSTRACT

A modified nested linear array (MNLA) has been reported
recently for a greater potential in increasing the degree-of-
freedom. However, there exist some “holes” in the difference
co-array, which results in missing “lags” and limited perfor-
mance of direction-of-arrival (DOA) estimation. In order to
tackle this problem, this paper applies a Toeplitz matrix com-
pletion technique to MNLA, and investigates the performance
of DOA estimation on this basis. Particularly, a semidefinite
program with trace minimization is derived to obtain the co-
variance matrix with Hermitian and Toeplitz structure. The
recovered Toeplitz covariance matrix is then utilized to per-
form DOA estimation. Various numerical examples are pro-
vided to verify the effectiveness and superiority of the pro-
posed method.

Index Terms— DOA estimation, direction finding, Toeplitz
matrix completion, nested array

1. INTRODUCTION

The design of sparse sensor arrays can date back to 1900s [1,
2], when configurations such as minimum-redundancy linear
arrays, fully augmentable arrays and partially augmentable
arrays were proposed. In array signal processing community,
sparse sensor arrays have received particular attention, mainly
due to their capability in increasing the degree of freedom
(DOF) compared to the classical arrays, like uniform linear
array (ULA). However, the above-mentioned sparse arrays do
not have closed-form expressions to indicate where to put the
sensors when arbitrary number of sensors is deployed.

In recent years, two kinds of sparse array, named coprime
and nested arrays, have been proposed by P. P. Vaidyanathan
et al. in [3–7]. These arrays have closed-form expressions to
demonstrate how to place the sensors. Thereafter, modified
arrays based on the coprime and the nested arrays have been
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proposed [8–12], among which the modified nested linear ar-
ray (MNLA) has been proposed recently in [8]. The MNLA
belongs to partially augmentable arrays, and it has larger DOF
and better performance in direction-of-arrival (DOA) estima-
tion when compared with other existing sparse arrays.

As there are probably lags missing in the difference co-
array of some of the aforementioned array configurations and
the missing lags cause performance degradation in DOA es-
timation, several techniques [2, 13–16] have thus been pro-
posed to deal with the problem. For instance, the maximum
entropy Toeplitz completion and the minimum nuclear norm
Toeplitz completion were proposed in [2] and [13], respec-
tively, in which the optimization problems were convex and
hence were easy to be solved. A minimum-size virtual array
which has the equal aperture with original array and has filled
co-array is introduced in [14]. However, the minimum-size
virtual array cannot be guaranteed to have the same number
of sensors as the original one, and it may need more sensors.
More recently, a virtual array interpolation method which ap-
plies atomic norm minimization to coprime array has been
proposed in [15, 16], where better performance of DOA esti-
mation especially for spatially close sources is disclosed.

The interest of this paper is to solve the problem caused
by missing lags in MNLA. The missing lags in the difference
co-array in MNLA may result in performance degradation of
DOA estimation. To tackle this problem, a new method based
on Toeplitz covariance matrix completion is devised. Overall,
the completion process includes the following two steps: 1)
construct covariance matrix with Toeplitz structure using the
existing lags while the missing lags were replaced by zeros;
2) derive and solve a semidefinite program with trace mini-
mization to obtain the final Toeplitz covariance matrix. With
the so-obtained Toeplitz covariance matrix, direction finding
is performed with the aid of traditional approaches.

The rest of this paper is organized as follows. Section 2
describes the signal model. Section 3 presents the proposed
method. Section 4 verifies the proposal with numerical exam-
ples, and Section 5 concludes this paper.
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2. SIGNAL MODEL

To begin with, the original two-level nested linear array
(ONLA) [6] as well as the MNLA [8] are briefly reviewed,
and the signal model for DOA estimation using MNLA is
introduced.

2.1. Original Two-Level Nested Linear Array

The ONLA is a co-array consisting of two ULAs, whose sen-
sor positions are given by two sets SM = {md1 | m =
0, 1, · · · ,M−1} and SN = {Md1+nd2 | n = 0, 1, · · · , N−
1}, where d1 and d2 are the interspaces,M andN are the sen-
sor numbers of the first and the second ULA, respectively. d1
and d2 satisfy: d2 = (M + 1)d1. This co-array can gener-
ate a virtual array with virtual sensor locations marked by the
difference set between SM and SN .

It should be pointed out that the difference set of SM and
SN is a continuous number set, and its DOF is 2N(M+1)−1.
The DOF is maximized given fixed total number of physical
sensors L = M +N . The solution is as follows:

1) M = N = L
2 , if L is even, and the resulting DOF is

L2−2
2 + L;

2) M = L−1
2 , N = L+1

2 , if L is odd, and the resulting
DOF is L2−1

2 + L.

2.2. Modified Nested Linear Array

The MNLA extends the structure of ONLA with enlarged
DOF. As illustrated in Fig. 1, an MNLA includes two ULAs
and an additional sensor. We choose M and N − 1 sensors to
form the first and the second ULAs with inter-spacings d1 and
d2, respectively, and a separate sensor is with d1 + d2 apart
from the last sensor of the second ULA. The gap between the
first and the second ULAs is

⌊
M+N−1

2

⌋
d1, and d1 and d2

satisfy:

d2 =

(
M +

⌊
M +N − 1

2

⌋)
d1 (1)

where b·c is the floor function. That is to say, the sensor lo-
cations of the first and the second ULAs are given by SM and
SN−1, respectively, which are represented as follows

SM = {md1 | m = 0, 1, · · · ,M − 1} (2a)
SN−1 = {d1d2 + nd2 − d1 | n = 0, 1, · · · , N − 2}. (2b)

The additional sensor is located at

S1 = {d1d2 + (N − 1)d2}. (3)

2.3. Signal Model for MNLA

Consider an MNLA with total sensor number being L = M+
N , whose sensor locations are depicted as (2a)-(3), and K

0 1 0 1 0

First ULA Second ULA Separate Sensor

b(M+N¡1)=2cd1 d2 d1 + d2

d1

M¡1 N¡2

Fig. 1. Illustration of configuration of MNLA.

narrow-band far-field signals impinging onto the MNLA from
directions {θ1, θ2, · · · , θK}. Denote the sensor locations as
P , SM ∪ SN−1 ∪ S1 = [p1, p2, · · · , pL]. The observation
data of MNLA can be formed as

x(t) = Bs(t) + n(t) (4)

where t is the time index, and B = [b(θ1), · · · ,b(θK)] is
the steering matrix with b(θ) = [βp1(θ), · · · , βpL(θ)]T and
β(θ) = ej2π

sin(θ)
λ , λ denotes the wavelength of the incident

signals and (·)T stands for transpose operator.
Assuming that the signals are mutually uncorrelated, and

the noises follow independent and identically Gaussian distri-
bution, the data covariance matrix is defined as follows

Rx , E{x(t)xH(t)} = BRsB
H + σnI (5)

where Rs , E{s(t)sH(t)}, E{·} and (·)H represent the
mathematical expectation and conjugate transpose operators,
respectively, σn denotes the noise power, and I stands for
identity matrix. It is worth noting that when in the case of
ULAs, the resulting covariance matrix is a Toeplitz Hermitian
matrix. However, here, the array configuration under consid-
eration is MNLA rather than ULA. Thus, Rx is not a Toeplitz
matrix, and the DOA estimation performance would be lim-
ited whenever it is directly used base on traditional direction
finding techniques. To this end, a Toeplitz matrix completion
procedure is applied to transform the MNLA covariance ma-
trix to a ULA counterpart before performing DOA estimation.
A better performance is expected by recovering those missing
lags, as shall be demonstrated by the simulation results.

3. PROPOSED METHOD

In this section, a progress of Toeplitz matrix completion is
firstly proposed to be applied to MNLA, and then, the ob-
tained covariance matrix with Toeplitz structure is utilized to
perform DOA estimation.

3.1. Progress of Toeplitz Matrix Completion

As discussed in [8], Rx obtained from an MNLA has some
lags being missed. As a numerical demonstration to better
illustrate the problem, we set L = 5, M = 2, N = 3, K = 1
and d1 = 1. According to (1)–(3), we have d2 = 4, SM ∪
SN−1 ∪ S1 = {0, 1, 3, 7, 12} (i.e., p1 = 0, p2 = 1, p3 =
3, p4 = 7, p5 = 12). In this example, the observation data is
as follows

x(Ex)(t) = b(θ1)s1(t) + n(t) (6)
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where the superscript (·)(Ex) is used to indicate that the re-
lated term is for this example only. The corresponding data
covariance matrix is given by

R(Ex)
x =b(θ1)σsb

H(θ1) + σnI

=σs


β0(θ1) β−1(θ1) β−3(θ1) β−7(θ1) β−12(θ1)

β1(θ1) β0(θ1) β−2(θ1) β−6(θ1) β−11(θ1)

β3(θ1) β2(θ1) β0(θ1) β−4(θ1) β−9(θ1)

β7(θ1) β6(θ1) β4(θ1) β0(θ1) β−5(θ1)
β12(θ1) β11(θ1) β9(θ1) β5(θ1) β0(θ1)


+ σnI. (7)

It can be seen from (7) that R
(Ex)
x is not a Toeplitz matrix

and some lags, including β8(θ1), β10(θ1), β−8(θ1), and
β−10(θ1), are missing.

In order to obtain the Toeplitz covariance matrix counter-
part from R

(Ex)
x and to recover the missing lags, we propose

to apply the following two-step scheme to the MNLA covari-
ance matrix.

Step 1: Construct a Toeplitz matrix T0 with the existing
lags in Rx, in which the missing lags are replaced by zeros
and in the next step, we intend to recover these missing lags
based on trace minimization. For instance, in the above ex-
ample, the Toeplitz covariance matrix is constructed as

T
(Ex)
0 = toep(c, r) (8)

where toep(c, r) denotes the Toeplitz matrix with c as the
first column and r as the first row. Moreover, we have

c =[β0(θ1), β1(θ1), β2(θ1), β3(θ1), β4(θ1), β5(θ1),

β6(θ1), β7(θ1), 0, β9(θ1), 0, β11(θ1), β12(θ1)]T (9)

r =[β0(θ1), β−1(θ1), β−2(θ1), β−3(θ1), β−4(θ1), β−5(θ1),

β−6(θ1), β−7(θ1), 0, β−9(θ1), 0, β−11(θ1), β−12(θ1)].
(10)

Step 2: Note that the constructed Toeplitz matrix T0 in
Step 1 can be viewed as the covariance matrix of the observa-
tion data using the sensors located in the difference set (e.g.,
0, 1, 2, 3, 4, 5, 6, 7, NaN, 9, NaN, 11, 12). The missing
lags are equivalent to the broken-down sensors (e.g., 8 and 10
in the example). Therefore, we can formulate the following
low-rank matrix recovery problem

min
w

rank(T) s.t.T = T0+
∑
l∈H

(
wlI

l
(+) + w∗l I

l
(−)

)
(11)

where rank(·) represents the rank of a matrix, l is the position
of the lth hole, H is the set of hole positions (in the above
example, we have H = {8, 10}), w = {wl}l∈H, (·)∗ denotes
the complex conjugate operator, I(+) and I(−) are defined as

I(+) =


0 1

0 1

0
. . .
. . . 1

0

 , I(−) =


0
1 0

1 0
. . . . . .

1 0

 .

It is known that the nuclear norm, which is defined as the
sum of all the singular values of a matrix, can be chosen as an
alternative of the rank [13, 17–19]. Therefore, (11) is recast
to the following problem:

min
w
‖T‖∗ s.t. T = T0 +

∑
l∈H

(
wlI

l
(+) + w∗l I

l
(−)

)
(12)

where ‖ · ‖∗ denotes the nuclear norm of a matrix.
Moreover, as T is Hermitian and positive semidefinite, its

nuclear norm is equal to the sum of its nonnegative eigen-
values, or saying, its trace [18]. Hence, the aforementioned
problem can be further rewritten as

min
w

trace(T) s.t.

{
T=T0+

∑
l∈H

(
wlI

l
(+) + w∗l I

l
(−)

)
,

T � 0
(13)

where trace(·) is the trace of a matrix, and T � 0 indicates
that T is a positive semidefinite matrix. This is a semidefinite
program, and there exist many efficient algorithms and high-
quality softwares to solve these types of problems.

3.2. DOA Estimation with Toeplitz Covariance Matrix

Let T? be the solution to the problem (13), and then clas-
sical approaches like multiple signal classification (MUSIC)
algorithm [20] can be adopted for DOA estimation. More spe-
cially, the eigenvalue decomposition of T? is first conducted
as follows

T? = UsΣsU
H
s + UnΣnUH

n (14)

where Σs is a diagonal matrix with its diagonal containing
the largest K eigenvalues, Us consists of the eigenvectors
corresponding to the largest K eigenvalues, while Σn is a
diagonal matrix with its diagonal containing the remaining
eigenvalues , Un consists of the eigenvectors corresponding
to the remaining eigenvalues. Next, the spatial spectrum is
constructed as follows

P (θ) = aH(θ)UnUH
n a(θ) (15)

where a(θ) = [β0(θ), β1(θ), · · · , βDm(θ)] with Dm being
the maximal number in the difference set among the physical
sensor positions. Finally, the directions of the K incoming
signals can be determined through searching for the minima
of P (θ) in the spatial region of interest.

4. SIMULATION RESULTS

In this section, several simulation experiments are carried
out to verify the effectiveness of the proposed method. For
comparison purpose, the DOA estimation using Toeplitz co-
variance matrix completion method with ONLA [6], MUSIC
method [20] with MNLA, and MUSIC method with ULA are
simultaneously experimented. Note that MNLA, ONLA, and
ULA share the same number of sensors in all the experiments.

4476



−20 −10 02 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 3 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 6 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 9 20 30

−10

0

10

20

30

 

 

−20 −10 02 10 20 30

−10

0

10

20

30

D
O

A
 S

p
e
c
tr

u
m

 (
d
B

)

 

 

−20 −10 0 3 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 6 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 9 20 30

−10

0

10

20

30

 

 

−20 −10 02 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 3 10 20 30

−10

0

10

20

30

Angle (Degree)

 

 

−20 −10 0 6 10 20 30

−10

0

10

20

30

 

 

−20 −10 0 9 20 30

−10

0

10

20

30

 

 

Proposed Method with MNLA Toeplitz Completion with ONLA MUSIC with MNLA MUSIC with ULA

Fig. 2. Angle resolution comparison for different SNRs and
different angle separations between sources ∆θ. SNR is set
as −5 dB, 0 dB, and 5 dB (from row 1 to row 3), and the
angle separation ∆θ between two sources is set as 2◦, 3◦, 6◦,
and 9◦ (from column 1 to column 4).

4.1. Angle Resolution Comparison

In this example, we compare the DOA estimation resolution
in different signal-to-noise ratio (SNR) and different angle
separations. Two (K = 2) signals are impinging upon a lin-
ear array with L = 5 sensors. The number of snapshots is
1000. The spatial spectrum among these methods are plotted
in Fig. 2. Obviously, it is seen that, in the harsh environment
(very low SNR and very small ∆θ), all the methods performs
poorly; while as the SNR or ∆θ increases, they all can esti-
mate two directions more and more accurately. Additionally,
the proposed method with MNLA firstly achieves satisfactory
performance when the SNR or ∆θ increases. Moreover, the
proposed method has sharpest peaks in or nearby the real im-
pinging directions in any experimental situations.

4.2. RMSE Comparison

We now compare the root-mean-squared error (RMSE) of the
DOA estimates. The RMSE is calculated as

RMSE =

√√√√ 1

QK

Q∑
q=1

K∑
k=1

(θ̂kq − θk)2 (16)

where θ̂kq is the DOA estimate of the k-th signal in the q-th
Monte Carlo run, and Q is the total number of runs. MUSIC
method is applied on a filled-sensor ULA which has the same
physical aperture with MNLA to set a lower bound for RMSE.

First, two signals from {0◦, 10◦} impinge onto a linear ar-
ray with L = 5 sensors. SNR ranges from −4 dB to 12 dB.
The number of snapshots is 500, and the total number of
Monte Carlo runs is Q = 1000. The curves of RMSE ver-
sus SNR are drawn in Fig. 3. The gap between the proposed
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Fig. 3. RMSE versus SNR with 500 snapshots.
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Fig. 4. RMSE versus snapshot number with SNR = 10 dB.

method and the lower RMSE bound is smaller than any other
gaps between other testing methods and the lower bound.

Then, the SNR is fixed to be 10 dB, while the number of
snapshots varies from 10 to 500, and other parameters are kept
unchanged. The curves of RMSE versus number of snapshots
are showed in Fig. 4. Again, it is observed that the proposed
method has the closest RMSE to the lower bound when com-
pared to other methods for different snapshots.

5. CONCLUSION

In this paper, DOA estimation using a modified nested linear
array has been investigated. A Toeplitz matrix completion
scheme has been devised for MNLA which involves missing
lags. The recovery process included two steps: 1) construct
a covariance matrix with Toeplitz structure using the existing
lags while the missing lags are replaced by zeros; 2) formulate
and solve a semidefinite program with trace minimization to
obtain the recovered Toeplitz covariance matrix. The Toeplitz
covariance matrix is subsequently used for direction finding.
Simulation results have validated the superior performance of
the proposed method compared with other methods.
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