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ABSTRACT

In this paper, the Cramér-Rao Bound for the Direction-of-
Arrival parameter under the partial relaxation framework
is derived. We introduce a non-redundant parameterization
of the signal model corresponding to the partial relaxation
framework, in which the array structure in part of the steering
matrix is neglected while the rank of the relaxed steering ma-
trix is maintained. We prove that the stochastic Cramér-Rao
Bound for the Direction-of-Arrival parameter under the par-
tial relaxation signal model is lower-bounded by that of the
conventional stochastic Cramér-Rao Bound. Furthermore, we
prove that the partial relaxation estimator for the Weighted
Subspace Fitting criterion asymptotically achieves the con-
ventional Cramér-Rao Bound in the case of uncorrelated
source signals.

Index Terms— DOA Estimation, Cramér-Rao Bound,
Partial Relaxation, Non-redundant Parameterization, Mean-
squared Error.

1. INTRODUCTION

Partial relaxation (PR) has been recently introduced as a
new framework for the task of Direction-of-Arrival (DOA)
estimation. The idea of partial relaxation is to treat the
steering matrix as an element of a relaxed steering mani-
fold where the sensor array structure of only one direction is
maintained. Methods developed under the PR framework ex-
hibit improved performance with respect to the conventional
spectral-search algorithm at comparable computational com-
plexity. Particularly, the PR method based on the covariance
fitting criterion possess exceptional threshold performance
which is comparable to that of the Maximum Likelihood
estimator [1, 2, 3].

Comparing to DOA estimators utilizing the full dimen-
sional search, e.g., Maximum Likelihood estimators [4, 5],
due to the relaxation of the steering structure and thus im-
plying a model mismatch with the true model, degraded per-
formance of PR methods in terms of DOAs estimation error
is predicted. On the other hand, since the interfering effects
of neighboring source signals are partially considered in the
PR framework, an improvement in the estimation error is ex-
pected in the case of PR methods when comparing with esti-
mators utilizing the single-source approximation in the least-
square formulation[3, Sec. III], e.g., MUSIC[6]. In the liter-
ature, this conjecture has only been numerically confirmed in
certain scenarios in [3], and the theoretical difference in the

asymptotic estimation error between PR estimators and con-
ventional counterparts has not been analyzed. Furthermore,
the Cramér-Rao Bound (CRB) for the DOA parameter un-
der the PR framework, which represents the lower bound on
the asymptotic estimation error of all unbiased PR estimators,
has neither been derived nor compared with the conventional
stochastic CRB [7, 8, 9].

In this paper, the asymptotic behavior of the DOA estima-
tors under the PR framework is investigated through the CRB
analysis [10, 11, 12]. First, the conventional signal model for
the task of DOA estimation is introduced in Section 2. A brief
introduction of the PR model and the corresponding parame-
terization of the covariance matrix of the received signal for
the PR signal model are presented in Section 3. In Section 4,
a closed-form formula of the CRB for the DOA parameter un-
der the PR signal model is derived. Theoretical implications
and numerical results regarding the performance of estimators
using the conventional and the PR signal model are presented
in Sections 5 and 6, respectively. In Section 7, some conclud-
ing remarks are made and extensions to future research are
discussed.

2. CONVENTIONAL SIGNAL MODEL

Consider an array of M sensors receiving N narrowband
signals emitted from sources with corresponding unknown
DOAs θ = [θ1, . . . , θN ]

T. We assume that the number of
sources N is known, and N < M . The sensor measurement
vector x(t) = [x1(t), . . . , xM (t)]

T ∈ CM×1 in the baseband
at time instant t is modeled as

x(t) = A(θ)s(t) + n(t) for t = 1, . . . , T, (1)

where s(t) = [s1(t), . . . , sN (t)]
T ∈ CN×1 denotes the

baseband source signal vector from N sources. We as-
sume that the transmit signal vector s(t) is Gaussian dis-
tributed, i.e., s(t) ∼ NC (0,P ) with rank (P ) = N . Further,
n(t) ∈ CM×1 represents the additive circularly complex
Gaussian noise vector at the sensor array with the noise co-
variance matrix νIM . The steering matrixA(θ) ∈ CM×N in
(1), which is assumed to have full column rank, is given by

A(θ) = [a(θ1), . . . ,a(θN )] , (2)
where a(θn) denotes the sensor array response for the DOA
θn. Assuming that the source signals and the noise are uncor-
related, the received signal x(t) is also Gaussian distributed
with zero mean and covariance matrix R, where the covari-
ance matrixR ∈ CM×M is given by

R = E
{
x(t)x(t)H} = APAH + νIM . (3)
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3. PARAMETERIZATION OF THE PARTIAL
RELAXATION MODEL

As mentioned in [1, 3], the signal model for the PR model
is similar to the conventional counterpart in (1). However,
the structure of the steering matrix is partially relaxed, i.e.,
A ∈ ĀN where the relaxed array manifold ĀN is defined as:

ĀN =
{
A = [a(θ),B]

∣∣∣rank(A) = N,B ∈ CM×(N−1)
}
,

(4)
and θ ∈ {θ1, . . . , θN} is the desired direction whose parame-
terization is maintained. Since the received signal is Gaussian
distributed with zero mean, all information is concentrated in
the covariance matrix R. As a consequence, in order to de-
rive the CRB from the received signal under the PR model,
we introduce a compact non-redundant parameterization of
the received covariance matrixR in (3) under the assumption
A ∈ ĀN as described in the following. We note that the rank
condition in (4) implies that there exists an invertible minor
square matrix of A with dimension N × N . By re-indexing
the sensors if necessary, we assume that, for the following
matrix partition

A =

a1(θ) bT
1

a2(θ) B2

a3(θ) B3


 1

(M −N)

(N − 1)

(5)

the minor block matrix
[
a1(θ) bT

1
a3(θ) B3

]
is invertible with

a1(θ) 6= 0, and therefore the inverse
(
B3 − a3a

−1
1 bT

1

)−1

exists. By introducing the invertible transformation matrix
T :

T =

[
1 −a−1

1 bT
1

(
B3 − a3a

−1
1 bT

1

)−1

0
(
B3 − a3a

−1
1 bT

1

)−1

]
, (6)

with the shorthand notation a = a(θ) =
[
a1,a

T
2,a

T
3

]T
, the

signal model in (1) is rewritten as

x(t) = Ās̄(t) + n(t), (7)

where the transformed steering matrix Ā and the transformed
transmit signal s̄(t) are defined as:

Ā = AT =

a1 0T

a2 B̄
a3 IN−1

 and s̄(t) = T−1s(t). (8)

The reduced interference matrix B̄ ∈ C(M−N)×(N−1) in (8)
is computed as

B̄ =
(
B2 − a2a

−1
1 bT

1

) (
B3 − a3a

−1
1 bT

1

)−1
. (9)

As a result, any relaxed steering matrixA ∈ ĀN in (4) can be
uniquely parameterized by the desired DOA θ, the unstruc-
tured matrix B̄ and the transformation matrix T . Applying
the transformation in (8) to (3) and noting that the transformed
transmit signal s̄(t) is Gaussian distributed with zero mean,
we obtain

R = ĀP̄ ĀH + νIM , (10)
where Ā is defined in (8) and P̄ = T−1PT−H is the trans-
formed transmit covariance matrix. Clearly, the parameteriza-
tion ofR does not require the knowledge of either T orP but

only the Hermitian matrix P̄ . Motivated by this observation,
we collect all parameters required to describe the covariance
matrixR in the PR model defined in (10) as follows

α =
[
θ, εT,ηT, p̄T, ν

]T
, (11)

where α is the parameter vector, ε(k,l) = Re
{
B̄kl
}

and

ε =
[
ε(1,1), . . . , ε(M−N,1), . . . . . . , ε(M−N,N−1)

]T
(12)

contains the real part of the reduced interference parameters
in B̄. In the same manner, we define η(k,l) = Im

{
B̄kl
}

and

η =
[
η(1,1), . . . , η(M−N,1), . . . . . . , η(M−N,N−1)

]T
(13)

contains the imaginary part of the interference parame-
ters. p̄ ∈ RN2×1 is obtained from

{
P̄nn

}
,Re

{
P̄mn

}
and

Im
{
P̄mn

}
for 1 ≤ m,n ≤ N andm < n. It is not difficult to

show that the parameterization in (11) is unique, and thus the
CRB exists for the corresponding parameters [13]. Using the
non-redundant parameterization in (11), in the next section,
the CRB corresponding to the desired parameter θ is derived.

4. DERIVATION OF THE CRAMÉR-RAO BOUND
FOR THE PARAMETER θ

Inspired by the work in [8, 14], in this section, we derive the
CRB for the parameter θ of the PR model case as given in
(7) and (10). We assume that, the inverse matrices which ap-
pear in the following derivation exist. In accordance with the
parameterization in (11), the element on the p-th row and q-
th column of the inverse CRB C−1 = Σ for the parameters
β =

[
θ
∣∣ εT
∣∣ηT

]T
is given by [8, Eqs. (15)-(17), (31)]

Σpq =
2T

ν
Re

{
tr

(
P̄ ĀHR−1ĀP̄

dĀ

dβp

H

Π⊥Ā
dĀ

dβq

)}
, (14)

where Π⊥
Ā

= I − Ā
(
ĀHĀ

)−1
ĀH, and the vectors ε and η

are defined in (12) and (13), respectively. The CRB matrixC
is partitioned in accordance with the partition of β as follows

C−1 =

[
Cθθ Cθε Cθη
Cεθ Cεε Cεη
Cηθ Cηε Cηη

]−1

=

[
Σθθ Σθε Σθη

Σεθ Σεε Σεη
Σηθ Σηε Σηη

]
.

(15)
We compute the elements of each individual matrix block in-
dependently. The entry Σθθ is computed from (14) as

Σθθ =
2T

ν
Re
{
eH

1 P̄ Ā
HR−1ĀP̄ e1d

HΠ⊥Ād
}
, (16)

where d =
da(θ)

dθ
. With the definition

M̄ =
(
P̄ ĀHR−1ĀP̄

)T
=

[
M̄11 M̄H

21

M̄21 M̄22

]
, (17)

the element Σθθ is compactly written as

Σθθ =
2T

ν
Re
{
M̄11d

HΠ⊥Ād
}
. (18)

Next, we compute Σθε =
[
Σθε(1,1)

, . . . ,Σθε(M−N,N−1)

]
.

Each element Σθε(k,l)
is computed using (14) by setting

βp = θ and βq = ε(k,l) = Re
{
B̄kl
}

to obtain
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Σθε(k,l)
=

2T

ν
Re
{
eH
l+1P̄

HĀHR−1ĀP̄ e1d
HΠ⊥Āek+1

}
,

(19)
where ek is an elementary vector with conformable size
whose k-th element is one and the remaining are zeros. The
expression in (19) is rewritten in matrix form as

Σθε = ΣT
εθ =

2T

ν
Re
{
M̄H

21 ⊗
(
dHΠ⊥ĀJ

)}
, (20)

where J = [e2, . . . , eM−N ] ∈ RM×(M−N−1) is the selec-
tion matrix and M̄12 is defined as in (17) and ⊗ denotes the
Kronecker product. Similarly, the compact formula for the
block Σθη is expressed as

Σθη = ΣT
ηθ =

2

ν
Re
{
jM̄H

21 ⊗
(
dHΠ⊥ĀJ

)}
. (21)

Performing the same procedure for the remaining blocks, we
obtain

Σεε = Σηη =
2T

ν
Re
{
M̄22 ⊗

(
JHΠ⊥ĀJ

)}
, (22)

Σεη = ΣT
ηε =

2T

ν
Re
{
jM̄22 ⊗

(
JHΠ⊥ĀJ

)}
. (23)

Substituting (18), (20) – (23) into (15), the CRB in the PR
model for the desired direction θ, which corresponds to the
entry Cθθ, is calculated using the block matrix inversion
lemma as follows (see [15, Misc. 7.3],[16, Eq. (R.3)-(R.4)])
PR-CRB = Cθθ

=
ν

2T

(
Re
{
M̄11d

HΠ⊥Ād
}
− Re

{(
M̄H

21 ⊗
(
dHΠ⊥ĀJ

))
(
M̄−1

22 ⊗
(
JHΠ⊥ĀJ

)−1
) (
M̄21 ⊗

(
JHΠ⊥Ād

))})−1

=
ν

2T

(
M̄11d

HΠ⊥Ād−
(
M̄H

21M̄
−1
22 M̄21

)
dHΠΠ⊥

Ā
Jd
)−1

.

(24)
Furthermore, we can prove that Π⊥

Ā
= ΠΠ⊥

Ā
J by noting, due

to the existence of the CRB matrix C, JHΠ⊥
Ā
J is invertible

and hence rank(Π⊥
Ā

) = rank(ΠΠ⊥
Ā
J ) = M − N . More-

over, the two idempotent Hermitian matrices Π⊥
Ā

and ΠΠ⊥
Ā
J

are commutative and hence they share the same eigenvectors
[15, Th. 1.3.12]. Every vector lying in the nullspace of Π⊥

Ā
also lies in the nullspace of ΠΠ⊥

Ā
J and therefore the two pro-

jection matrices must be identical. As a result, the CRB for
the desired parameter θ simplifies to:

PR-CRB =
ν

2T

((
M̄11 − M̄H

21M̄
−1
22 M̄21

)
dHΠ⊥Ād

)−1
.

(25)
The expression in (25) is further rewritten by noting that the
transformation matrix T in (6) is invertible, and therefore
Π⊥
Ā

= Π⊥A. In addition, substituting M̄ =
(
T−1

)∗
MT−T

to (25) and simplifying, we obtain the following expression
for the CRB for the DOA of the desired source signal in the
PR case:

PR-CRB =
ν

2T

((
M11 −MH

21M
−1
22 M21

)
dHΠ⊥Ad

)−1
.

(26)
where the matrix M is defined and partitioned conformably
with the matrix M̄ in (17) as

M =
(
PAHR−1AP

)T
=

[
M11 MH

21
M21 M22

]
. (27)

5. ASYMPTOTIC RESULTS

In this section, four propositions that relate the DOA estima-
tion error performance of estimators using the PR model with
that of the conventional model are presented.
Proposition 1. The Cramér-Rao Bound of the PR model is
always lower-bounded by the Cramér-Rao Bound of the con-
ventional model

Sketch of Proof. If we choose θ = θ1, it is sufficient to prove
that PR-CRB ≥ CRB11, where the inverse of the CRB matrix
of the conventional model is given by [7]:

CRB−1 =
2T

ν
Re
{[

M11 MH
21

M21 M22

]
�
(
DHΠ⊥AD

)}
, (28)

where D =

[
da(θ1)

dθ1
, . . . ,

da(θN )

dθN

]
= [d |D2 ] and � de-

notes the Hadamard product. Correspondingly, we partition

DHΠ⊥AD =

[
dHΠ⊥Ad dHΠ⊥AD2

DH
2 Π⊥Ad DH

2 Π⊥AD2

]
=

[
D̄11 D̄H

21

D̄21 D̄22

]
,

(29)

and define M̃ =

[
MH

21M
−1/2
22

M
1/2
22

] [
M
−1/2
22 M21 M

1/2
22

]
.

From [17, Lemma A.1], the following expression

Re
{
M̃ �

(
DHΠ⊥AD

)}
=

Re
{[(

MH
21M

−1
22 M12

)
D̄11 MH

21 � D̄H
21

M21 � D̄21 M22 � D̄22

]} (30)

is positive semidefinite. Applying the property of the Schur
complement of the most upper-left entry of the block matrix
on the right hand side of (30) results in (see [18, (6.5)]):
Re
{(
M11 −MH

21M
−1
22 M21

)
D̄11

}
≤ Re

{
M11D̄11

}
−

Re
{
MH

21 � D̄H
21

}
Re
{
M22 � D̄22

}−1
Re
{
M21 � D̄21

}
.

(31)
Note that both expressions on the left and the right hand side
of (31) are nonnegative. Consequently, taking the inverse of
both sides and applying the block matrix inversion lemma for
the most upper-left entry of the matrix on the right hand side
results in

Re
{(
M11 −MH

21M
−1
22 M21

)
D̄11

}−1 ≥[
Re
{[

M11 MH
21

M21 M22

]
�
[
D̄11 D̄H

21

D̄21 D̄22

]}−1
]

11

,
(32)

From (26), (28), (29) and (32), the result follows.

Proposition 2. In the case of high SNR and uncorrelated
source signals, the Cramér-Rao Bound for the PR model is
approximately equal to the conventional Cramér-Rao Bound

Sketch of Proof. In the high SNR regime and uncorrelated
source signals, the matrix M defined in (27) is element-
wise approximately equal to the diagonal matrix P (see [19,
Eq. (8.110)]), and thus the conventional CRB is reduced to
CRB11 ≈

ν

2T

(
dHΠ⊥AdP11

)−1
. On the other hand, since

the source signals are uncorrelated, M21 ≈ P21 = 0. As
a result, the CRB for the PR model in (26) is given by
PR-CRB =

ν

2T

(
P11d

HΠ⊥Ad
)−1

and the result follows.
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Fig. 1: Uncorrelated signals, number of snapshots T = 200

Proposition 3. As T → ∞, the mean-square error of the
partially-relaxed weighted subspace fitting (PR-WSF) estima-
tor in [3] achieves the Cramér-Rao Bound of the PR model.

Sketch of Proof. By choosing a special weighting matrix as
described in [3, Eq. (14)] for the PR-WSF estimator, the pq-
th element of the asymptotic inverse error covariance matrix
C−1 with respect to the parameter β defined in Section 4 is
given by (see [20, Eq. (50)–(51) and (70)]):[
C−1

]
pq

=
2T

ν
Re

{
tr

(
dĀ

dβp

H

Π⊥Ā
dĀ

dβq
Ā†EsWoptE

H
s Ā
†H

)}
,

(33)
withEs andWopt defined in [20, Eq. (10)] and [20, Eq. (71)],
respectively. Furthermore, we have Ā†EsWoptE

H
s Ā
†H =

P̄ ĀHR−1ĀP̄ by a similar argument as in [20, Th. 3]. Com-
paring (33) with (14), the result follows.
Proposition 4. As T → ∞, the mean-square error of PR-
WSF is smaller than or equal to that of MUSIC.
Sketch of Proof. If we choose the weighting matrix W =
IN , the estimator PR-WSF is equivalent to MUSIC [3, App.
B]. However, by a similar argument as in [20, Th. 3], the
weighting matrix of PR-WSF results in the smallest asymp-
totic mean square error. Consequently, as T → ∞, the mean
square error of PR-WSF is always smaller than or equal to
that of MUSIC.

6. SIMULATION RESULTS

In this section, we provide some simulation results for the
stochastic CRB and the proposed CRB for the relaxed ar-
ray manifold case (PR-CRB) in (26). The results are aver-
aged over NR = 1000 Monte-Carlo runs. The Root-Mean-
Squared-Error (RMSE) is calculated as:

RMSE =

√√√√ 1

NRN

NR∑
ω=1

N∑
n=1

(
θ̂

(ω)
n − θn

)2

, (34)

where the estimated DOAs in the ω-th Monte-Carlo run
θ̂(ω) = [θ̂

(ω)
1 , . . . , θ̂

(ω)
N ]T and the true DOAs θ = [θ1, . . . , θN ]

T

in (34) are sorted in ascending order. We assume N = 2
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Fig. 2: Correlated signals, number of snapshots T = 200

source signals at θ = [0◦, 10◦]
T with the transmit covari-

ance matrix P =

[
1 ρ∗

ρ 1

]
impinge on a ULA of M = 5

antennas with the spacing equal to half of the signal wave-
length. The number of snapshots is kept at T = 200. Since
the asymptotic performance of root-MUSIC[21] and MU-
SIC are identical [23], and the mean-square error of MUSIC
estimates is smaller than or equal to that of ESPRIT [24],
we only depict the error performance of MUSIC. In the first
scenario depicted in Figure 1, when the two source signals
are uncorrelated, the difference between the two Cramér-Rao
Bounds are significant if the SNR is very low, as predicted
by Proposition 2. PR-WSF outperforms MUSIC in both the
threshold and the asymptotic regions. The fact that the MU-
SIC estimator is outperformed by PR-WSF in the asymptotic
region is predicted by Proposition 4, although the difference
in the RMSE performance is negligible.

In Figure 2, we assume that the two source signals are
correlated with the correlation factor ρ = 0.95. As predicted
by Proposition 1, we observe that the Cramér-Rao Bound for
the conventional signal model is smaller than that of the par-
tial relaxation model. Moreover, the difference in RMSE be-
tween the two Cramér-Rao Bounds is imminent in the whole
inspected region. Similar to the first scenario, PR-WSF out-
performs MUSIC in both the asymptotic and the threshold
regions.

7. CONCLUSIONS AND OUTLOOK
In this paper, a non-redundant parameterization for the sig-
nal model under the relaxed steering matrix assumption is
introduced, and henceforth, the Cramér-Rao Bound for the
PR model is derived. Theoretical and numerical results show
that, if the source signals are uncorrelated, the Cramér-Rao
Bound of the PR model, which is achieved asymptotically by
the computationally-efficient PR-WSF, is comparable to that
of the conventional counterpart. Furthermore, asymptotically,
PR-WSF possesses a lower mean-square error than MUSIC.

For future work, the theoretical error behaviors for the re-
maining estimators under the PR framework, not only in the
asymptotic region but also in the threshold region, are of great
interest and thus require further investigations.
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