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ABSTRACT

In this paper, we propose a new unsupervised domain adaptation
method based on the Riemannian geometry of Symmetric Positive-
Definite (SPD) matrices. The proposed domain adaptation is based
on parallel transport (PT) and moments alignment. We show that
this method facilitates meaningful comparisons between data points
from different domains, while preserving the inherent internal struc-
ture of each domain. Experimental results demonstrate the adap-
tation of high-dimensional noisy electrophysiological signals col-
lected from different subjects.

Index Terms— Riemannian manifolds, parallel transport, trans-
fer learning, high-dimensional signal analysis

1. INTRODUCTION

Recent technological progress has led to a surge in the availability of
highly complex and heterogeneous data in a broad range of domains.
This paper addresses two emerging problems in the analysis of such
data: domain adaptation and coping with their high-dimensionality.

Notably, data in high dimension usually do not live in a Eu-
clidean space. Therefore, applying analysis or learning techniques,
which typically rely on Euclidean distances, directly to the data often
leads to poor performance. By departing from Euclidean spaces, and
considering instead non-Euclidean Riemannian geometry facilitates
the extraction and utilization of the structure of the data, allowing for
meaningful data point comparisons in high dimension. Particularly
in this work, we focus on the Riemannian geometry of covariance
matrices, which are Symmetric Positive-Definite (SPD) and consti-
tute a cone manifold with a known Riemannian metric [1, 2]. The
combination of covariance matrices as high-dimensional data fea-
tures with their inherent Riemannian geometry has proven to be pow-
erful in many tasks [3–5]. For example in [4, 6], a new representa-
tion in a Euclidean space was obtained by projecting each covariance
matrix to the tangent plane of the Riemannian manifold at the mean
of the data. This representation was shown to be highly successful
in capturing the essence of complex data, leading to state of the art
classification results in a large and broad variety of applications, e.g.,
Brain Computer Interface (BCI) [6] and medical imaging [3].

However, when considering data arising from several domains,
for example, using different acquisition systems, in different ses-
sions, or from different subjects, the covariance matrices might ex-
hibit highly different structures, rendering the mere use of the Rie-
mannian metric and the projection to a single tangent plane insuf-
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ficient. Indeed, we show here that the covariance matrices of Elec-
troencephalography (EEG) recordings from multiple subjects lie in
different regions of the SPD manifold, and therefore the Euclidean
representation proposed in [6] does not accommodate appropriate
comparisons. This problem calls for domain adaptation, where a
given model or representation, which is well performing in a partic-
ular domain, is adapted to a different, yet related domain [7–9].

In this paper, we propose to use a geometric preserving trans-
formation for domain adaptation. Specifically, we further exploit the
Riemannian geometry of SPD matrices and parallel transport (PT)
the covariance matrices along the cone manifold to a common loca-
tion [10, 11]. Indeed, in [11] PT attained a joint representation of
several data sets that appropriately accommodates multiple domains
in BCI and sleep research problems. One shortcoming of PT is that
it does not take into account the internal structure of the data from
each domain, but rather depends only on the Riemannian mean of
the covariance matrices. Consequently, two data sets from two do-
mains with different structures, but with the same Riemannian mean,
will undergo the same adaptation via PT. As we show in the sequel,
this could significantly hamper performance.

Here, we propose to complement PT with an additional proce-
dure based on moments alignment that takes into account the internal
structure of data from each domain as well as the inter-relations be-
tween the domains. We show that this procedure facilitates improved
domain adaptation. Experimental results demonstrate adequate un-
supervised adaptation of high-dimensional noisy EEG recordings
[12], collected from different subjects. Moreover, we show that
based on our method, training a classifier on recordings from mul-
tiple subjects, and then, testing it on recordings from a new, unseen
subject without any new labels, is possible and gives rise to accu-
rate transfer learning. While we focus on an unsupervised setting, a
related approach to domain adaptation using the Riemannian geom-
etry of SPD matrices in a supervised setting was recently presented
in [13].

This paper is organized as follows. In Section 2, we present
preliminaries on the Riemannian geometry of SPD matrices. In Sec-
tion 3, we formulate the problem and present the proposed domain
adaptation method. Section 4 shows experimental results on high-
dimensional noisy electrophysiological signals. Finally, we con-
clude the paper in Section 5.

2. RIEMANNIAN GEOMETRY OF SPD MATRICES

A symmetric matrix P ∈ Rd×d is positive-definite if all its eigen-
values are strictly positive, or equivalently, if vTPv > 0 for every
nonzero vector v. The set of all SPD matrices is an open convex
cone, constituting a differential Riemannian manifoldM. Let TPM
be the tangent space at the point P ∈ M equipped with the follow-
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where S1,S2 ∈ TPM are two symmetric matrices. This Rieman-
nian manifold has a unique geodesic between any two SPD matrices
P1,P2 ∈M, whose length defines a distance given by:
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The Riemannian mean of a set
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is defined by the
Fréchet mean:
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Particularly, the Riemannian mean of two SPD matrices P1,P2 ∈
M is located at the midpoint of the connecting geodesic and is ex-
plicitly given by
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The Riemannian mean of a general number of matrices can be
computed using an iterative procedure [4, 11]. Given a set

{
Pi ∈

M
}N
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, the pairwise Riemannian distances can be approximated by
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2 and P is the Riemannian mean
of {Pi}. Lastly, we denote the vector representation of any symmet-
ric matrix S by

s = vec
(
S
)

where vec(·) is a vector consisting of the elements of the upper trian-
gular of a symmetric matrix S, with

√
2 weights on its off-diagonal

elements such that

‖si − sj‖2 = ‖Si − Sj‖F

for any two symmetric matrices Si and Sj , where si = vec (Si)
and sj = vec (Sj).

3. PROPOSED METHOD
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assume observations with zero mean.
We focus here on a body of previous work [1, 4, 5], where co-

variance matrices, which are particular SPD matrices, are used as
features, exploiting their Riemannian geometry. In their seminal
work [4], Barachant et al. proposed to project each covariance ma-
trix P

(k)
i to the tangent space TPM, where P is the Riemannian

mean of all the matrices. This representation was shown to be highly
successful in capturing the essence of complex data. However, we
show here that when the data sets live in various domains this repre-
sentation highly depends on the domain.

To facilitate comparisons between data from various domains,
we propose to further exploit the Riemannian geometry of SPD ma-
trices and to PT all the matrices along the cone manifold to a com-
mon location. This method was first introduced in [11], and here we
briefly review its main principles and steps.

First, the Riemannian mean of each set k, denoted by P
(k)
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computed. Second, a common point Q ∈M is set, for example, the

Riemannian mean of
{
P

(k)
}K

k=1
. Third, the PT from P

(k)
to Q is

applied to each SPD matrix P
(k)
i , which is defined by

Γ
(k)
i = Γ

P
(k)→Q

(
P

(k)
i

)
= EP

(k)
i ET (6)

where E =

(
Q
(
P

(k)
)−1

) 1
2

. Finally, the transported matrices{
Γ

(k)
i

}
i,k

are projected to the tangent plane at Q and represented

as vectors in a Euclidean space

z
(k)
i = vec

(
Q
− 1

2 LogQ

(
Γ

(k)
i

)
Q
− 1

2

)
∈ RD×1 (7)

where D = d (d+ 1) /2. For details and rigorous analysis, we refer
the readers to [11].

One shortcoming of PT is its sole dependence on the Rieman-
nian mean of each set, and that it does not take into account the
structure of the set. Therefore, we propose to complement PT with
an additional refinement step, particularly, a unitary rotation in order
to align the primary sources of variability of the sets.

Formally, let
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vectors in RD resulted from PT (7). For each k ∈ {1, 2, . . . ,K}, let

Z(k) =
[
z
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1 ,z

(k)
2 , . . . , z

(k)
Nk

]
∈ RD×Nk (8)

be a matrix consisting of the new representation of the data in each
data set. In addition, let U (k) ∈ RD×D be a matrix whose columns
are the left-singular vectors of Z(k), ordered by their respective
singular-values, from the largest to the smallest. Note that by con-
struction, the sample mean of the vectors is zero, since they are pro-
jections to the tangent plane at their Riemannian mean. The pro-
posed adaptation refinement is carried out by the following rotation:

Y (k) =
(
U (k))TZ(k), ∀k.

Several remarks due at this point. First, we assume that the
singular-values are simple so that each singular-vector is unique.

4465



Fig. 1. The first two principal components of the representation of the trials obtain by the different algorithms: (a) “Baseline”, (b), “Mean
Transport”, (c) steps (1) - (3a) of Algorithm 1 and (d) Algorithm 1. Each point represents a single trial. Trials from two subjects and the
responses to two somatosensory stimuli and one visual stimulus are presented. The plots on the left are colored by the subject and the plots
on the right are colored by the stimulus.

Second, to circumvent possible singular-vector sign ambiguity, un-
der the assumption that the angles between the corresponding singu-
lar vectors are acute, we flip the orientation of the singular-vectors
to satisfy this assumption. Namely, we set a certain set to be a ref-
erence set. Without loss of generality, let set k = 1 be the reference
set. For each of the other sets k 6= 1, we flip the orientation of the
singular-vector u(k)

j , given as the jth column of U (k), according to:

u
(k)
j ← sign

(〈
u

(1)
j ,u

(k)
j

〉)
u

(k)
j , ∀j.

The domain adaptation algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

We applied the proposed domain adaptation to EEG recordings from
64 channels organized in sets corresponding to 11 subjects in ages
ranging from 7 to 16 years, where each subject is considered as a
different domain. The recordings were conducted in trials of about
1 second. In each trial, the EEG response to one of several stimuli
was recorded. More details about the data appear in [14]. There
are many reports that study the electrical response patterns to stim-
ulation, named evoked potentials [15–18]. However, they all rely
on specific feature extraction that are heavily tailored and adapted to
the specific study and paradigm, in contrast to the currently proposed
method.

Three pre-processing steps were applied: (i) down sampling
to 1KHz, (ii) exclusion of malfunctioning electrodes and highly
noisy trials, and (iii) applying the Fourier transform to each channel
recording in each trial and taking the absolute value. After pre-
processing, the entire data set included 37 electrodes (channels) and
contained 80− 500 repeated trials per stimulus for each subject. Let
X

(k)
i ∈ R37×Ti,k be the absolute value of the Fourier transform of

the EEG recordings from the k-th subject at the i-th trial.
For illustration purposes, we first considered recordings only

from two subjects and their EEG responses to 2 somatosensory stim-
uli (right arm and left arm nerve stimulation) and 1 visual stimulus
(light projection with a flash). From each stimulus, we collected the
responses from 50 repeated trials. Consequently, we organized the

recordings in two sets
{
X
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i

}150

i=1
and

{
X

(2)
i

}150

i=1
.

We applied Algorithm 1 to
{
X

(1)
i

}150

i=1
and

{
X

(2)
i

}150

i=1
and

compared the result to two other methods. In the first method, which
we term “Baseline”, the covariance matrices are used as features
with their Riemannian distance, without additional processing. In
the second method, which we term “Mean Transport” (MT), the Rie-
mannian mean of each set is subtracted from the covariance matrices
as proposed in [4]. To emphasize the contribution of the different al-
gorithmic steps, and particularly, the refinement by moments align-
ment, we also report the result of steps (1)-(3a) of Algorithm 1.

For visualization purposes, we applied PCA to the obtained rep-
resentation of the trials by the different algorithms and depict in Fig-
ure 1 the two principal components. Consequently, each point in
the figure is associated with the obtained representation of one trial.
Circles mark trials of subject 1 and diamonds mark trials of subject
2. The left and right scatter plots only differ by color – on the left,
the trials are colored by the subjects, and on the right, the trials are
colored by the different stimuli.

Figure 1(a) presents the PCA of the representation obtained by
the “Baseline” method. We observe that trials with the same stimu-
lus applied to different subjects are embedded in different locations.
Figure 1(b) presents the PCA of the representation obtained by the
“Mean Transport” method. On the left, we observe that the trials are
not clustered by the subjects, implying on some degree of domain
adaptation. However, on the right, we observe that the internal struc-
ture is lost, i.e., responses to the somatosensory stimuli are mixed.
Figure 1(c) presents the PCA of the representation obtained by steps
(1)-(3a) of Algorithm 1 and Figure 1(d) presents the representation
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Algorithm 1 Domain adaptation using Riemannian geometry

Input: K sets
{
X

(k)
i ∈ Rd×T

(k)
i

}Nk

i=1
, k = 1, . . . ,K.

Output: K matrices
{
Y (k) ∈ RD×Nk

}K

k=1
, D = d (d+ 1) /2

whose columns are the aligned vector representations of the input
data matrices.

1. For each set
{
X

(k)
i

}Nk

i=1
, compute the covariance matrices{

P
(k)
i

}Nk

i=1
and their Riemannian mean P

(k)
.

2. Compute Q, the Riemannian mean of
{
P

(k)
}K

k=1
.

3. For k = 1 . . . ,K:

(a) For i = 1, . . . , Nk:

i. Apply PT (6): Γ(k)
i = Γ

P
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)
ii. Project Γ(k)

i to a Euclidean space (7):

z
(k)
i = vec

(
Q
− 1

2 LogQ

(
Γ

(k)
i

)
Q
− 1

2

)

(b) Compute Z(k) (8) and apply SVD to obtain U (k).

(c) If k 6= 1, for each j ∈ {1, 2, . . . , D} update the
columns of U (k):
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〉)
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(d) Compute Y (k) =
(
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)T
Z(k).

obtained by the full algorithm. In Figure 1(d), we detect 3 distinct
clusters corresponding to the 3 stimuli without dependence on the
particular subject, indicating successful domain adaptation. In ad-
dition, Figure 1(c) entails that the refinement step in Algorithm 1 is
essential.

Next, we extended the examination to the entire set of 11 sub-
jects, considering their EEG responses to 3 different types of stimuli:
somatosensory, visual and auditory. Figure 2(a) presents the results
obtained by the “Baseline” method and Figure 2(b) presents the re-
sults obtained by Algorithm 1. We observe that Algorithm 1 attains
three distinct clusters corresponding to the three different stimuli
without dependence on the subjects identity. To provide quantita-
tive assessment, we applied classification with leave one subject out
cross-validation based on the representation obtained by the 3 com-
pleting methods. Figure 3 presents the classification results when
using a cubic SVM [19, 20]. The obtained average classification
rates are 63.2% (“Baseline”), 72.2% (“Mean Transport”), 84.9%
(steps (1)-(3a) of Algorithm 1), and 94.9% (the full Algorithm 1).
We remark that the sign of the second principal components of sub-
jects 5 and 6 were manually flipped (note that their respective angles
were 89◦ and 95◦). In practice, this could be achieved with an ex-
tra knowledge of only few labeled points. Importantly, besides the
above note, the domain adaptation reported here was achieved in an
unsupervised manner. Namely, without any knowledge of the stim-
uli, the high-dimensional noisy EEG recordings from different sub-
jects were adequately adapted, so that a classifier can be trained on
data from one subject and applied to data from another test subject,
without any labels of the test subject.

Fig. 2. The first two principal components of the representation of
the trials obtain by: (a) “Baseline”, (b) Algorithm 1. Each point
represents a single trial. Trials from 11 subjects and the responses
to three different types of stimuli are presented. The plots on the left
are colored by the subject and the plots on the right are colored by
the stimulus.

Fig. 3. Classification results of the responses to three different stim-
uli from 11 subjects, using a cubic SVM, based on the representation
obtained by the different algorithms.

5. CONCLUSIONS

Analyzing related data sets living in different domains is a long-
standing problem, which calls for domain adaptation techniques. In
this paper, we exploit the Riemannian geometry of SPD matrices
and present an unsupervised approach for domain adaptation based
on PT and moments alignment. The use of Riemannian geometry fa-
cilitates natural incorporation of both the intrinsic structure of each
data set as well as the relations between the different data sets. Ex-
perimental results demonstrate the applicability of the presented do-
main adaptation method to a challenging problem involving high-
dimensional noisy electrophysiological signals.
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