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ABSTRACT
We study decentralized estimation of time-varying signals at a
fusion center (FC), when energy harvesting sensors transmit
sampled data over rate-constrained links. We propose a dy-
namic strategy based on stochastic optimization for selecting
radio parameters, sampling set, and harvested energy at each
node, with the aim of estimating a time-varying signal with
guaranteed performance while ensuring stability of the bat-
teries around a prescribed operating level. Numerical results
validate the proposed approach for dynamic signal estimation
under communication and energy constraints.

Index Terms— Signal recovery, probabilistic quantiza-
tion, energy harvesting, stochastic optimization.

1. INTRODUCTION

Wireless sensor networks (WSN’s) are envisioned to play a
key role in the Internet of Things (IoT) paradigm, where tril-
lions of smart devices are expected to be connected with each
other while sensing information from the environment [1, 2].
In fact, embedding intelligent signal processing tools in our
productive systems will enable distributed proactive sensing
and control mechanisms aimed at preventing performance
degradation and optimizing the overall production chain. For
this reason, decentralized estimation was deeply investigated
in several works as, e.g., [3–7], with the aim of optimizing the
radio resource allocation while imposing a constraint on the
mean-square error (MSE) performance in the case of static
parameter estimation. Meanwhile, energy harvesting (EH)
techniques have attracted a lot of interest in WSN’s in order
to cope with the battery-limited nature of sensor devices,
enabling the possibility to collect energy from renewable
sources such as wind, sun, vibration, and heat [8]. EH nat-
urally introduce dinamicity in the estimation problem due to
the intermittent arrivals of energy from the environment and
the variability over time of the battery levels at each sensor.
In this context, the works in [9,10] studied the optimal packet
communication strategy to maximize the net bit rates while
stabilizing the data queue in EH communications. An energy
scheduling strategy for remote estimation in the case of a sin-
gle EH sensor was proposed in [11]. Finally, the work in [12]

proposed a dynamic radio resource allocation for static and
dynamic estimation in WSN’s with EH devices, in the case
of scalar parameter estimation and an analog amplify-and-
forward transmission strategy at each sensor.

In this paper, we consider vector signal estimation in EH
wireless sensor networks. We propose a dynamic resource al-
location strategy that optimally selects radio parameters, the
set of sampling sensors, and the harvested energies in order to
minimize the average energy expenditure of the WSN, while
imposing prescribed performance guarantees in terms of av-
erage MSE performance and stability of the battery levels at
each node. The method builds on stochastic optimization
techniques [13] in order to cope with the dynamic and un-
known variability of the energy arrival process and the radio
channels. Numerical results illustrate the validity of the pro-
posed approach for decentralized estimation in EH WSN’s.

2. RATE-CONSTRAINED SIGNAL ESTIMATION

Let us consider a WSN with N nodes that is deployed to
monitor a signal over a certain geographic area. We consider
a dynamic scenario where time is divided in slots of equal
duration T . Let x(t) = [x1(t), . . . , xN (t)]T be the vector
collecting the signal values at every node of the network at
time t. The observed data are assumed to belong to a low-
dimensional subspace, i.e., at each time t, the vector x(t) can
be cast as:

x(t) = Us(t), (1)

where U is an N ×r matrix, with r ≤ N , and s(t) is an r×1
column vector. The columns of U are assumed to be linearly
independent and thus constitute a basis spanning the useful
signal subspace. In practice, the dimension r of the useful
signal subspace is typically much smaller than the dimension
N of the observation space. From (1), at time t, the network
collects measurements {yi(t)}Ni=1 given by:

yi(t) = xi(t) + vi(t) = uHi s(t) + vi(t), (2)

i = 1, . . . , N , where uHi is the i-th row of matrix U, and
vi(t) is zero-mean, uncorrelated noise with variance σ2

i . The
measurements in (2) must be transmitted to a FC to evaluate
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a proper estimate of the signal x(t). Assuming the presence
of rate-constrained radio channels, the messages {yi(t)}must
necessarily be encoded into a sequence of bits in order to be
sent to the FC. Suppose that [−A,A] is the signal range that
sensors can observe. At each time t, we consider a uniform
quantizer at each node i, which divides the range [−A,A] into
intervals of length ∆i(t) = 2A/(2bi(t) − 1), and rounds the
observations in (2) to the neighboring endpoints of these small
intervals in a probabilistic manner [3], [4]. Then, if l∆i(t) <
yi(t) < (l + 1)∆i(t), with l ∈ {−2bi(t)−1, . . . , 2bi(t)−1},
yi(t) is quantized to m(yi(t), bi(t)) according to:

m(yi(t), b) = l∆i(t) + α∆i(t), (3)

where α is a Bernoulli random variable such that E{α} =
Prob{α = 1} = (yi(t) − l∆i(t))/∆i(t) ∈ [0, 1]. Thus, ac-
cording to (3), the quantized i-th observation at time t, i.e.,
mi(yi(t), bi(t)), can be equivalently written as:

mi(yi(t), bi(t)) = xi(t) + vi(t) + q(yi(t), bi(t)), (4)

where q(yi(t), bi(t)) = (α − E{α})∆i(t) denotes the quan-
tization noise. In particular, it is possible to show that
mi(yi(t), bi(t)) in (4) is an unbiased estimate of xi(t), and

E|mi(yi(t), bi(t))− xi(t)|2 ≤ σ2
i +

A2

(2bi(t) − 1)2
(5)

is an upper bound on the estimation variance [3, 4].
Our goal is to build a linear estimator of x(t) from

{mi(t)}Ni=1 in (4) that guarantees a target value of MSE.
In particular, we consider the (quasi-)BLUE given by:

x̂(t) = U
(
UH (Cv + Cq(t))

−1
U
)−1
×

×UH (Cv + Cq(t))
−1

m(t) (6)

where m(t) = {mi(t)}Ni=1, Cq(t) = diag
{

A2

(2bi(t)−1)2

}N
i=1

.

Notice that x̂(t) in (6) is an unbiased estimator of x(t) since
every mi(t) in (4) is an unbiased quantization of xi(t). Now,
let us assume that the channel between each sensor and the
FC is corrupted with additive white Gaussian noise whose
double-sided power spectrum density is given by N0/2. Fur-
thermore, we denote by hi(t) the channel coefficient between
sensor i and the FC at time t. If sensor i sends bi(t) bits
with quadrature amplitude modulation with constellation size
2bi(t) at a bit error probability BERi, then the amount of en-
ergy required for the transmission is [4, 14, 15]:

ei(t) =
2NfN0Gd
h2i (t)

(
ln

2

BERi

)
(2bi(t) − 1), (7)

where Nf is the receiver noise figure, and Gd s a system con-
stant defined in the same way as in [14,15]. In the sequel, for
simplicity, we assume that the BER of each transmission is

made sufficiently small such that errors have a negligible ef-
fect on the MSE. Thus, letting ci(t) =

2NfN0Gd

h2
i (t)

(
ln 2

BERi

)
,

and using (5) and (7), it is possible to prove that the MSE of
the estimator in (6) is upper bounded by:

MSE(e(t)) ≤ Tr


 N∑
i=1

uiu
H
i

σ2
i +

A2c2i (t)

e2i (t)


−1 , (8)

where e(t) = [e1(t), . . . , eN (t)]T is the vector collecting all
transmission energies. In the sequel, we illustrate the EH
model at each sensor, and the proposed dynamic resource al-
location method based on stochastic optimization.

3. DYNAMIC RESOURCE OPTIMIZATION

The EH process is modeled as successive energy packet ar-
rivals, i.e.,Ri(t) units of energy arrive at sensor i at the begin-
ning of the t-th time slot. The energy arrivals Ri(t) are i.i.d.
among different slots, and are upper bounded by Rmax [16].
In each time slot, part of the arrived energy, say, ri(t), satisfy-
ing ri(t) ≤ Ri(t), will be harvested and stored in the battery,
and it will be available for transmission [cf. (7)] from the
next slot. Let us denote the battery level of node i at time
slot t as Bi(t). In virtue of the energy causality constraint
ei(t) ≤ Bi(t) for all t, the battery level evolves according to:

Bi(t+ 1) = Bi(t)− ei(t) + ri(t), for all i, t. (9)

Of course, from (9), the battery level is determined by the
balance between the energy spent for transmission [i.e., ei(t)]
and the one harvested from the environment [i.e., ri(t)].

The proposed strategy minimizes the expected sum of
transmission energies of all sensors, under a constraint on the
average MSE, while also ensuring that all the batteries remain
stable over time. The problem can be cast mathematically as:

min
e(t),r(t)

lim
t→∞

1

t

t−1∑
τ=0

N∑
i=1

E {ei(τ)}

s.t. lim
t→∞

1

t

t−1∑
τ=0

E {MSE(e(τ))} ≤ γ

lim
t→∞

1

t

t−1∑
τ=0

E {ri(τ)− ei(τ)} = 0 ∀i;

0 ≤ ei(t) ≤ min[emax
i , Bi(t)], ∀i, t;

0 ≤ ri(t) ≤ Ri(t), ∀i, t.

(10)

The first constraint in (10) imposes that the average MSE is
lower than a value γ > 0; the second constraint avoids the bat-
tery levels are drained or explode over time (i.e., stability) by
enforcing that the average inputs and outputs must be equal;
the third constraint puts bounds on the transmitted powers,
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i.e., the minimum among the battery level Bi(t) and the max-
imum energy emax

i that can be transmitted by the radio inter-
face; finally, the last constraint in (10) sets the bounds on the
harvestable energy at each time slot.
Min-Drift-Plus Penalty Algorithm. To solve problem (10),
we exploit tools from stochastic optimization [13]. To this
aim, we first introduce the virtual queue Z(t) associated with
the MSE inequality constraint in (10), with update equation:

Z(t+ 1) = max[Z(t) + MSE(e(t))− γ, 0]. (11)

Furthermore, to keep the energy storage stabilized around a
maximum battery size, we use the approach from [17, 18],
thus defining the virtual queues:

B̃i(t) = Bi(t)− ϑi, i = 1, . . . , N, (12)

where Bi(t) evolves as in (9), and ϑi > 0 is a parameter to be
selected. As illustrated in [18], the use of the virtual queues
B̃i(t) in (12) is useful to stabilize the battery levels Bi(t) in
(9) around ϑi. Then, the algorithmic approach passes through
the definition of the Lyapunov function:

L(Ψ(t)) =
1

2
Z(t)2 +

1

2

N∑
i=1

B̃i(t)
2 (13)

where Ψ(t) =
[
Z(t), {B̃i(t)}i

]
. We can now define the one-

slot conditional Lyapunov drift as:

∆(Ψ(t)) , E{L(Ψ(t+ 1))− L(Ψ(t))|Ψ(t)} (14)

where the expectation depends on the control policy, and is
taken with respect to the random channels and energy packet
arrivals. Since our approach aims at minimizing the energy
spent by the network to perform the signal recovery task [cf.
(10)], we introduce the drift-plus-penalty function as [13]:

∆p(Ψ(t), e(t)) = ∆(Ψ(t)) +V

N∑
i=1

E {ei(t)}|Ψ(t)} (15)

where V is a control parameter used to trade-off power con-
sumption with queues length. Following arguments as in [13],
exploiting (11) and (12), the drift-plus-penalty function in
(15) can be upper-bounded as:

∆p(Ψ(t), e(t), r(t)) ≤ C + V ·
N∑
i=1

E{ei(t)|Ψ(t)}

+ Z(t) · E
{

MSE(e(t))− γ|Ψ(t)
}

+

N∑
i=1

B̃i(t) · E{ri(t)− ei(t)|Ψ(t)} (16)

where C is a positive constant. Thus, using a stochastic ap-
proach where we greedily minimize instantaneous values of

Table 1: Min Drift-Plus-Penalty Algorithm

Every slot t, observe the queue states Ψ(t) and the random
events {hi(t)}, {Ri(t)}, and make the control actions:
[S.1] Set the optimal harvested energies {ri(t)} to

ri(t) = Ri(t) · I
(
B̃i(t) ≤ 0

)
(17)

where I(·) is the indicator function;
[S.2] Compute the transmission energies {ei(t)} by solving:

min
e(t)

N∑
i=1

(
V − B̃i(t)

)
ei(t) + Z(t) ·MSE(e(t))

subject to 0 ≤ ei(t) ≤ min[emax
i , Bi(t)]

(18)

(16) at each t [13], we obtain the control policy described by
the Min-Drift-Plus Penalty Algorithm in Table 1. The pro-
posed dynamic algorithm determines the optimal transmis-
sion energies {ei(t)}, the sampling set (i.e., the set of nodes
with transmitting energy different from zero), and the ener-
gies {ri(t)} to be harvested from the environment. In partic-
ular, step [S.1] is obtained by minimizing (16) with respect to
{ri(t)}, with the constraint 0 ≤ ri(t) ≤ Ri(t). Since (16) is
linear with respect to {ri(t)}, from (17), each node i collects
the maximum harvestable energy Ri(t) when Bi(t) ≤ ϑi;
whereas, for Bi(t) > ϑi, node i does not harvest any energy.
Consequently, merging (9) with (17), we have:

Bi(t) ≤ ϑi +Rmax, for all i, t. (19)

Step [S.2] of Algorithm 1 requires the solution of the non-
convex optimization problem (18) [cf. (8)]. Thus, at each
time slot t, we can only find a local optimum solution of (18).
Nevertheless, a possible convexification can be obtained re-
formulating the objective function and the stability constraint
in (18) in terms of the square energies {e2i (t)} and {r2i (t)}.
Following the same arguments as before, we would achieve
an algorithm totally similar to the one in Table 1, with same
step [S.1], and [S.2] entailing the solution of:

min
e(t)

N∑
i=1

(
V − B̃i(t)

)
e2i (t) + Z(t) ·MSE(e(t))

subject to 0 ≤ ei(t) ≤ min[emax
i , Bi(t)].

(20)

Now, using zi(t) =
e2i (t)

e2i (t)σ
2
i +A2c2i

, i = 1, . . . , N , and (8)

in (20), we obtain the equivalent problem:

min
e(t)

N∑
i=1

(
V − B̃i(t)

)
c2i

zi(t)

1− zi(t)σ2
i

+Z(t) · Tr

{(∑N
i=1 zi(t)uF,iu

H
F,i

)−1}
subject to 0 ≤ zi(t) ≤

ζi(t)

1 + ζi(t)σ2
i

(21)
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Fig. 1: Transmitted energy (a) and number of active nodes (b)
versus time, for different values of the parameter γ.

where ζi(t) = min[emax
i , Bi(t)]

2/(A2c2i ). If V > B̃i(t) for
all t 1, problem (21) is convex, and its globally optimal solu-
tion can be found using efficient algorithms [19].

4. NUMERICAL RESULTS

We consider a WSN with 50 nodes uniformly distributed over
a disk of radius 100 meters. The graph signal belongs to the
subspace spanned by the first six eigenvectors of the Lapla-
cian matrix of a graph, whose adjacency matrix considers
Gaussian weights depending on the relative distance among
the nodes. The observation noise in (2) is zero-mean, Gaus-
sian, with a variance σ2

i = 10−4 for all i. The radio channels
{hi(t)} consider free-space propagation with a carrier fre-
quency equal to 10 MHz. The other parameters are: A = 1,
Gd = 10−3, Nf = 10, BERi = 10−4 for all i. The i.i.d.
EH variables Ri(t) are extracted from a uniform distribution
between 0 and Rmax = 0.5 for all i, t.

To assess the performance of the proposed resource allo-
cation strategy, in Fig. 1(a), we illustrate the behavior of the
sum of transmission energies over the network, averaged over
50 independent simulations, versus the control parameter V ,
for different values of the MSE threshold γ. As expected, in-
creasing the value of V , from Fig. 1(a) we can notice how
the average transmission energy decreases, until a minimum
value that is lower for larger values of γ. This reduction of
overall transmitted energy is also due to the fact that, for large
values of V , many sensors do not transmit at all. Indeed, from
1(b), we can appreciate how the average number of active
nodes (or, equivalently, the average cardinality of the sam-
pling set) becomes smaller by increasing V , with floor values

1To ensure V > B̃i(t), it is sufficient to set V > Rmax ∀i, t [cf. 19].
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Fig. 2: Battery (a) and MSE (b) versus time, for different
values of the parameters γ and ϑi.

that again are lower if we consider larger values of γ. Also,
in Fig. 1(a), using a dashed line we illustrate the behavior of
the convex algorithm in (21), which performs similarly to its
nonconvex counterpart in (18).

The algorithm behavior in terms of average transmitted
energy and number of active nodes is obtained while guaran-
teing a prescribed performance in terms of MSE and battery
levels. To show this result, in Fig. 2(a), we illustrate the tem-
poral behavior of the battery level, averaged over the sensors
and over 50 independent simulations, considering V = 100
and different values of ϑi = ϑ for all i. As we can no-
tice From Fig. 2(a), the battery levels quickly become stable
around a value slightly greater than ϑ, while satisfying (19).
Finally, in Fig. 2(b), we show the temporal behavior of the
MSE, averaged over 50 independent simulations, considering
V = 100 and different values of γ. As we can notice From
Fig. 2(b), the algorithm stabilizes the MSE around γ, thus
guaranteing a target performance of signal estimation.

5. CONCLUSIONS

In this paper we have proposed a dynamic algorithm for opti-
mally selecting radio parameters (i.e., transmission energies,
quantization bits) and harvested energies in a WSN with EH
devices, with the aim of estimating a time-varying signal with
guaranteed average performance, while stabilizing the batter-
ies around a prescribed level. The method builds on stochastic
optimization tools and does not need any apriori knowledge
of the statistics of the random radio channels and renewable
energy arrivals. Interestingly, as a byproduct, the method dy-
namically selects the sampling set, i.e., the set of transmitting
nodes. Numerical examples illustrate the good performance
of the proposed dynamic resource allocation technique.
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