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ABSTRACT
In this paper, an optimal radar waveform-design scheme

is proposed, using frequency snapshots (i.e., frequency-
domain processing), based on an objective function derived
directly from a binary classification/identification criterion
constrained by waveform-energy. We consider an extended-
target model where the targets frequency response is assumed
to be complex Gaussian. High- and low-energy solutions for
the optimal waveform are explored and closed-form expres-
sions in both the scenarios are derived.

Index Terms— Binary target classification, radar wave-
form design, extended-target, complex signals

1. INTRODUCTION

In recent decades, a lot of research has been done on de-
signing optimal radar waveforms. It has been shown that
radar waveforms affect the performance of radar systems in
many ways for different kind of scenarios. For example,
linearly-frequency-modulated (LFM) waveforms are known
to improve detection in many scenarios by allowing high
energy of long pulses while maintaining the radar range res-
olution of a short pulse for targets that can be modelled as
point-targets [1]. The point-target model assumes that the
radar waveform reflected off a remote target is only delayed
and attenuated by a certain scalar factor which depends on
the physical and electromagnetic properties of the target (e.g.
radar cross-section (RCS)). In scenarios where the radar is
wideband or the target has large physical extent or both, tar-
get models such as point-target model become less accurate
in capturing target behaviour [2]. A more accurate model
is to assume that a target has an extended impulse response
(IR) that convolves with the transmitted radar waveform once
it hits the target. This is called an extended-target model.
The target IR is a feature that can be exploited to improve
detection and classification performance as each target class
can have its distinct IR.
∗The first author is partially supported by King Abdulaziz City for Sci-
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Limited work has been done on designing optimal wave-
form that maximises target classification performance. Gen-
erally, researchers have followed two main approaches: i)
To design the waveform pre-employment based on sufficient
prior knowledge available to maximise target classification
[3, 4, 5] and ii) to design the radar waveform on-the-fly using
a mix of special criterion (e.g., maximising mutual informa-
tion) and hypothesis testing, until a certain target classifica-
tion maximisation is achieved [6, 7, 8]. Most of the research
adopting the first approach derives the optimal waveform for
target classification in the time domain from objective func-
tions that are not directly classification-based, such as, signal-
to-interference-plus-noise ratio (SINR), mutual information,
the Euclidean or Mahalanobis distance between classes [3, 5].
In this paper, we derive the optimal complex-valued wave-
form to maximise binary target classification in the frequency
domain between classes with random target responses under
either coloured or white noise. We formulate the optimisation
problem to find the optimal waveform under constant energy
constraint. We derive and explore the high and low energy so-
lutions for this design problem which, to the authors’ knowl-
edge, has not been studied in the literature.

Notations: x is a scalar, x (small case bold) is a col-
umn vector, X is the Fourier transform of x, X (capital case
bold) is a matrix, (·)H is Hermitian transpose, ~ describes
continuous-time domain convolution, diag(X) is a diagonal
matrix with X constituting its diagonal elements, <x and =x
are the real and imaginary parts of x, respectively.

2. MODELLING

2.1. Signal Model

In the time domain, the IR of the target is convolved with the
waveform. The received signal y(t) in the time domain is
given by, y(t) = x(t) ~ h(t) + n(t), where x(t) is the radar
waveform, h(t) is the target IR and n(t) is the noise at the
receiver. In the frequency domain, the target frequency re-
sponse is multiplied with the frequency transform of the radar
waveform. Then, the signal model employing the frequency
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snapshot model [9] with vector notation, would be as follows:

Y = ΩXH +N (1)

where ΩX = diag(X), X is the frequency transform of the
radar waveform x, H is the frequency response of the ex-
tended target and N is the frequency transformed noise vec-
tor n at the receiver. All vectors are of size m × 1. Note,
H can represent a sum of all the signal dependent variation
or interferences as long as it satisfies the assumptions about
its distribution. For example, in [3] (where the derivation is
done in the time domain), the authors assumed IR to be a sum
of a deterministic part and a zero-mean random (i.e., clut-
ter) part, resulting in the distribution of IR having the mean
equal to the deterministic part and the covariance determined
by the covariance of the clutter. This, similarly, can be as-
sumed in the frequency domain where we assume that H is a
sum of a (deterministic) target frequency response M and the
clutter frequency vector C, resulting in H ∼ CN (M,ΣC),
where ΣC is the covariance of the clutter. Whether the signal-
independent variation is due to time or frequency response of
the target or due to clutter, the signal model is applicable and
identical results are to be expected.

2.2. Probability of misclassification and optimal wave-
form design

The binary classification problem is defined as follows: we
assume a target can either belong to class, i = 1 or i = 2
(i.e. ωi, for i = 1, 2, where ω is the state of nature as de-
fined in [10]) where the statistical properties of each class’s
frequency response are known a priori. If it is assumed that
frequency responses of both the classes have complex normal
distribution with different means but same covariance matrix,
i.e. Hi ∼ CN (Mi,ΣH), and the noise to be a complex nor-
mal random process with zero mean vector and covariance
matrix ΣN , i.e., N ∼ CN (0,ΣN ). Then, the distribution of
the frequency response of the received data vector Y , depend-
ing on the class i, would be: CNm×1(mi,ΣY ) for i = 1, 2
where mi = ΩXMi and ΣY = ΩXΣHΩH

X +ΣN . To derive
the probability of misclassification, we start with a minimum-
error-rate discriminant functions presented in [10]:

gi(Y ) =ln p(Y |ωi) + ln P (ωi)

=− (Y −mi)
HΣ−1

Y (Y −mi)

−mlnπ − ln|ΣY |+ ln P (ωi)

(2)

where p(Y |ωi) is the likelihood function of Y given ωi and
P (ωi) is the prior probability. If the prior probabilities for
all classes are identical (i.e. P (ω1) = P (ω2) = 0.5), it
is straightforward to derive the minimum-error-rate classifier
and the best hyperplane for classification by rearranging the
following equation that defines the separating hyperplane into
the form of a linear function:

g1(Y ) = g2(Y ) (3)

which results in the following expression:

<{(m1 −m2)HΣ−1
Y Y +

mH
2 Σ−1

Y m2 −mH
1 Σ−1

Y m1

2
} = 0

(4)
making the weight vectorW = Σ−1

Y (m1−m2) and the scalar
bias w0 = (mH

2 Σ−1
Y m2 −mH

1 Σ−1
Y m1)/2 as the standard

linear classifier equation is f(Y ) = WHY + w0.

2.2.1. Deriving the probability of misclassification

The probability of misclassification can be calculated given
the distribution of the classifier function in (4) which is de-
fined as:

f(Y ) = (m1 −m2)HΣ−1
Y Y +

mH
2 Σ−1

Y m2 −mH
1 Σ−1

Y m1

2
(5)

using the equation:

Pmc = p(<f(Y ) ≤ 0|ω1)P (ω1) + p(<f(Y ) > 0|ω2)P (ω2)
(6)

where: f(Y ) ∼ CN (µfi, σ
2
f ) for i = 1, 2. The mean µfi can

be derived as follows:

µfi = E{f(Y )|ωi}

= (m1 −m2)HΣ−1
Y mi +

mH
2 Σ−1

Y m2 −mH
1 Σ−1

Y m1

2
(7)

and similarly, the variance σ2
f :

σ2
f = E{(f(Y )− E{f(Y )})(f(Y )− E{f(Y )})H}

= (m1 −m2)HΣ−1
Y (m1 −m2)

(8)

Also, it can be shown that <µf1 = +σ2
f/2 and <µf2 =

−σ2
f/2. Then,

p(<f(Y ) ≤ 0|ω1) =

0∫
−∞

∞∫
−∞

ξ(<f(Y ))ξ(=f(Y )) · d=f(Y ) · d<f(Y )
(9)

and,

p(<f(Y ) > 0|ω2) =
∞∫
0

∞∫
−∞

ξ(<f(Y ))ξ(=f(Y )) · d=f(Y ) · d<f(Y )
(10)

where: ξ(x) =
1√
πσ2

x

exp{− (x−mx)H(x−mx)

σ2
x

}.

By solving the integration by substitution in addition to
employing the definition of the Q-function,

p(<f(Y ) ≤ 0}|ω1) = Q(+
√

2<µf1/σf ) (11)

p(<f(Y ) > 0}|ω2) = Q(−
√

2<µf2/σf ) (12)

Finally,

Pmc = Q
(√

(m1 −m2)HΣ−1
Y (m1 −m2)/2

)
. (13)
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2.2.2. Waveform design

The derivation of the probability of misclassification leads to
the expression in (13). In order to improve target classifica-
tion, the optimal waveform should be designed to maximise:

Φ(ΩX) = (m1 −m2)HΣ−1
Y (m1 −m2)

= (M1 −M2)HΩH
X(ΩXΣHΩH

X + ΣN )−1ΩX(M1 −M2)
(14)

which is the Mahalanobis distance between the means. Now,
after constraining the energy of the waveform in the time do-
main, the optimisation problem to find the optimal waveform
to maximise classification can be formulated as follows:

arg max
ΩX

Φ(ΩX)

s.t. tr(ΩXΩH
X) = mεx

(15)

where tr(·) is the trace function, εx is waveform energy in
time domain and m is the number of frequency bins.

We now explore the optimisation problem under two ex-
treme conditions: First, for a system allowing very high en-
ergy waveform such that ΩXΣY ΩH

X + ΣN ≈ ΩXΣY ΩH
X ,

while ΩX is invertible, Φ(ΩX) becomes approximately inde-
pendent of the waveform design and will be given by,

Φ(ΩX) = (M1 −M2)HΣ−1
H (M1 −M2) (16)

This also applies if the clutter-to-noise ratio (CNR)/signal-to-
noise ratio (SNR) (depending on what source of signal de-
pendent variation is assumed) is significantly large while the
waveform has modest or high energy. This conclusion cannot
be obtained if the derivation is time-domain based as the con-
volution matrix that is neither square nor invertible. Second,
if the waveform energy is low such that ΩXΣY ΩH

X + ΣN ≈
ΣN , then:

Φ(ΩX) = (M1 −M2)HΩH
XΣ−1

N ΩX(M1 −M2) (17)

which clearly leads to the optimal waveform being the eigen-
vector of the matrix ΩH

MΣ−1
N ΩM corresponding to its largest

eigenvalue of where ΩM = diag(M1 −M2). Similarly, this
is also applicable if SNR/CNR are significantly low.

If the above conditions do not hold and the energy of the
waveform is constrained to εx, there is no closed form so-
lution to this optimisation problem. This is because of the
presence of ΩX inside ΣY . In this case, finding the optimal
waveform can be achieved with an off-the-shelf optimisation
solver software.

3. RESULTS AND DISCUSSION

In this section, we present three simulations in terms of the
probability of correct classification vs energy per transmis-
sion εx for three different purposes: i) The first simulation

Fig. 1. Measured and theoretical probability of correct clas-
sification vs energy per transmission for an optimised wave-
form and a flat spectrum waveform.

Fig. 2. Theoretical probability of correct classification vs en-
ergy per transmission for an optimised waveform and a wave-
form generated by iterative process explained in [3] from mul-
tiple under same conditions.

shows classification performance maximisation achieved us-
ing the optimised waveform over a waveform with flat spec-
trum like LFM, ii) The second simulation shows that the opti-
mised waveform performs the same if not better than that de-
fined in [3] (in the time domain) and iii) The third simulation
shows the high energy limit that no waveform with high en-
ergy can outperform. The measurement performance is gen-
erated with 100,000 runs while the theoretical performance is
calculated from (13). The complex means of the classes and
the covariance are generated randomly at the start of each sim-
ulation. To design the radar waveform for each simulation,
Matlab optimisation toolbox is used where “interior-point”
algorithm is employed to solve the constrained complex opti-
misation problem.

Fig. 1 shows that as the energy per transmission increases,
the two waveforms eventually achieve perfect classification.
However, for less energy, the optimised waveform brings
better target identification performance than the classical flat
spectrum waveform. For example, at εx = 0.02, a proba-
bility of correct classification of approximately 0.97 can be
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Fig. 3. The theoretical and measured probability of correct
classification against energy per transmission for optimised
waveform at high energy levels (solid) and the high energy
limit (dashed) calculated from (13) and (16).

achieved employing the designed waveform while the other
can achieve 0.82. Fig. 2 shows the theoretical performance
for two time-domain based waveforms: one designed by
the iterative process presented in [3] for the same objective
function while the other is designed by the “interior-point”
algorithm by Matlab using a time-domain version of the opti-
misation problem presented above. The figure shows that the
optimised waveform achieves similar performance with slight
improvement over the one designed by the iterative process.
The measured performance does not add much information
to the figure as it will follow the corresponding theoretical
one as shown previously in Fig. 1. Fig. 3 shows the perfor-
mance of the optimised waveform for high energy values and
the maximum performance that can be achieved according
to (13) and (16). The result shows the probability of correct
classification is bounded by the high energy approximation.
Also, low energy limit can be calculated using (13) and (17)
which equals 0.5 at εx = 10−9 in this scenario.

4. CONCLUSION

In this paper, we have derived the optimal waveform de-
sign maximising binary target classification directly from the
probability of misclassification assuming the target frequency
response to be extended complex Gaussian random response.
We have derived an explicit expression for the probability of
misclassification based on the waveform and prior knowledge
about target classes and the noise at the receiver. The design
problem is set up based on the expression derived in addition
to constant energy constraint. The optimised waveform is
shown to maximise classification performance and slightly
outperforms that in [3]. We have derived the high energy and
low energy solutions for waveform design which have not
been studied in the literature. We showed that, even the opti-
mised waveform with sufficiently high energy, cannot achieve
better performance than that defined by the high energy limit

while also concluding that the waveform design becomes ir-
relevant at such high energy. We have derived the low energy
waveform and concluded that it would be the eigenvector of a
matrix containing the difference between classes’ means and
noise covariance matrix as given in (17).
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