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ABSTRACT

A novel maximum likelihood trajectory estimation algorithm
for targets in mixed stationary/moving conditions is pre-
sented. The proposed approach is able to estimate position
and velocity of the target over arbitrary complex trajecto-
ries, while explicitly taking into account the possibility of
stop&go motion. Moreover, a novel trajectory reconstruction
method based on the theory of Bézier curve is developed for
online smoothing of the trajectory, which keeps the advan-
tages of Bayesian smoothing while introducing only a fixed
lag in the estimation process. The performance assessment,
conducted on both simulated and real data, shows that the
proposed approach can outperform classical Kalman filter
and Rauch-Tung-Striebel smoother techniques.

Index Terms— trajectory reconstruction, smoothing,
maximum likelihood, tracking, estimation

1. INTRODUCTION

Moving point data can be defined as sequence of points
(x, y, t) generated by the motion of a target, such as an object,
animal, person, or vehicle/robot [1]. They are very relevant
in modern applications, mainly due to the fact that nowa-
days position information can be easily collected by GPS
receivers, often embedded in very popular devices, namely
smartphones, smart-watches, in-vehicle sensors, etc. [2, 3].

The processing of such space-time data to extract infor-
mation on kinematic parameters, often termed trajectory re-
construction, is of particular interest. Position-related infor-
mation can be collected by one or multiple sensors through
received signal strength (RSS) [4, 5] or time-difference-of-
arrival (TDOA) [6] for the sake of estimation and tracking
[7, 8]. The use of angle-of-arrival (AOA) is also of interest in
recent fields such as localization in mmWave (5G) massive-
MIMO systems and intelligent transportations systems [9].

In all the cases above, position estimates can be consid-
ered as “measurements” affected by “noise” (errors), i.e.,
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noisy points of a trajectory; the goal is to estimate the tra-
jectory of the observed target, which can move but also be
stationary for some time, without kinematics available.

Bayesian filtering, in particular smoothing and tracking
techniques, is the main tool to reconstruct the trajectory in a
finite observation interval [10,11]. While tracking techniques
compute only estimates of the current state given the his-
tory of past measurements, smoothing can be used to recon-
struct the whole trajectory based on all measurements [12,13].
Therefore, the former are typically applied for online trajec-
tory estimation, while the latter, although more accurate, can
be used only as offline (post-processing) tools. The most pop-
ular tracker is the celebrated recursive estimator known as
Kalman filter, which is the optimal (MMSE) estimator for
the case of linear time-invariant dynamical systems with mea-
surements affected by Gaussian noise.

Conventional tracking and smoothing approaches assume
that targets move according to a given kinematic model; as
a result, they are very effective for classical applications in
which the target exhibits prolonged periods of uniform mo-
tion and limited maneuvers. On the other hand, there is cur-
rently great interest in obtaining specific algorithms to process
space-time data of cars, quadcopters, and other targets that
can perform rapid maneuvers, including stop&go motion; for
such targets, it is very difficult to set a single kinematic model.

In this paper, a novel maximum likelihood (ML) trajectory
estimation algorithm for targets in mixed stationary/moving
conditions is presented. The proposed approach is able to es-
timate position and velocity of the target over a short lin-
ear segment of the trajectory and, in addition, also to deter-
mine the instant in which it started to move, if it was sta-
tionary. By applying this idea in a sliding-window fashion,
it can cope with arbitrary complex trajectories while explic-
itly taking into account the possibility of stop&go motion.
Moreover, a novel trajectory reconstruction method based on
the theory of Bézier curve is developed for online smooth-
ing of the trajectory, which keeps the advantages of Bayesian
smoothing while introducing only a fixed lag in the estima-
tion process. As a result, the proposed technique is able to
provide improved trajectory reconstruction while preserving
its on-line estimation capabilities. The performance of the
proposed algorithm are assessed in comparison with Kalman
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filter and Rauch-Tung-Striebel (RTS) smoother techniques,
showing that it can achieve superior performance. The valid-
ity of the proposed algorithm is finally demonstrated on real
data, collected during the experiments with quadcopters car-
ried out under the SafeShore project1.

2. PROPOSED ALGORITHM

Let s(t) be a generic trajectory, with unknown kinematics,
for which only position measurements are available with time
step T (hence at rate f = 1

T ), for instance obtained in a pre-
liminary localization step from RSS, TOA/TDOA or AOA
signals. This produces a sequence of moving points s(k), with
k = 1, . . . , L, being thus L the length of the trajectory in dis-
crete space. The approach is to consider a sliding-window pro-
cessing, i.e., to split the trajectory in sections of K � L mea-
surements in which the velocity is considered constant, up to
the possibility that the target starts to move at an unknown in-
termediate instant. The level of overlap between consecutive
sections is a design parameter: in this work we will keep it at
one point, so as to minimize the processing delay.

The algorithm involves two steps: in the first one, a ML
estimation approach is used to obtain the unknown kinematic
parameters, that is initial position p0, velocity v, and, when-
ever the target is stationary for a sub-interval of the window,
the instant k = j at which the motion is observed. The second
step addresses the trajectory reconstruction, solving the time
ambiguity in overlap points at the extremes of each section.

2.1. Step one: ML estimation of kinematic parameters

In a Cartesian d-dimensional system assume that Θ = [p0 v]
is the d-by-2 matrix composed by the vectors of the initial
target position and target velocity, i.e., p0 = [x0 y0]

> and
v = [vx vy]

> for d = 2 (similarly for d = 3), where >

denotes transposition. The considered law of motion is rather
general, that is, the position at time k is

p(k) = p(k − 1) + δkvT (1)

in which the parameter δk is the position increment with re-
spect to the (k − 1)-th position, with k ∈ {1, . . . ,K} and
p(0) ≡ p0. Suppose that at k = j the target position is differ-
ent from the one from k = 0 to k = j − 1. The model is de-
veloped using the increments δk, k = 1, . . . ,K, in particular
letting them take on the value 0 for j−1 observation instants,
i.e., for k = 1, . . . , j − 1 where the target is stationary, and
the value 1 for k = j, . . . ,K, since δk is the increment that
will be added to the initial position to reproduce the motion.

A vector δ(j) is used to give structure to the trajectory:

δ(j) =

[
0j−1

1K−j+1

]
(2)

1See http://safeshore.eu for additional information.

with 1n the n-dimensional column vector of ones, 0n the n-
dimensional column vector of zeros.

The position at time instant k can be expressed as

p(k) = Θwk = p0 + vTδ
>(j)ak (3)

where wk =

[
1

Tδ>ak

]
with ak =

[
1k

0K−k

]
.

The K observations in the current processing window are
represented by the d-by-K matrix Y = [y1 y2 · · · yK ] in
which each column yk is the d-dimensional position measure-
ment at time k. Let us assume that observations are affected
by Gaussian noise nk ∼ N (0d,R) with covariance matrix
R, so that each measurement can be modeled as

yk = Θwk + nk. (4)

On the basis of this assumption, observations can be ex-
pressed by the following joint distribution:

f(Y |R,Θ) =
e
− 1

2

K∑
k=1

(yk−Θwk)
>R−1(yk−Θwk)

(2π)Kd/2 detK/2R
(5)

In this paper, we address the case of R = σ2Id, while
the case of general unknown R is part of our ongoing work.
Under this assumption, we have the following result.

Theorem 1. Assuming nk ∼ N (0d, σ
2Id), the ML estimates

of position and velocity can be obtained as

[p̂0 v̂] = Y B(̂) (6)

whereB(̂) = 1
γ(̂)

[
T
(

2K−2̂+3
3 11×K −α>(̂)

)
2K

(K−̂+1)(K−̂+2)α
>(̂)− 11×K

]>
with

γ(̂)
def
= T

6 [K(4K − 4̂+6)− 3(K − ̂+1)(K − ̂+2)] and
α(j) = [0>j−1 1 2 · · · (K − j + 1)]>; also, posing H(j)

def
=

[1K Tα(j)], the ML estimate of j is

̂ = argmin
j∈{1,...,K}

K∑
k=1

‖yk − Y H(j)uk(j)‖2 (7)

with uk(j)
def
= 1
γ(j)

[
T (2K−2j+3)

3 − Tδ>(j)ak
2Kδ>(j)ak

(K−j+1)(K−j+2) − 1

]
.

Proof. The complete proof is omitted due to space limita-
tions. Here we provide a sketch; in particular, notice that all
but one of the unknown parameters in (5) can be obtained by
applying successive derivatives, leading to a final compressed
likelihood which depends only on the unknown j. Eq. (7) is
then obtained by algebraic manipulations.

Remarkably, (7) is a simple search among K values. The
approach can be easily extended to more general stop&go
conditions; in particular, the “dual” case in which the target
is moving and stops at an intermediate instant j ≤ K can be
treated by considering a definition of δ(j) with flipped {0, 1}
entries. This more general setup is left for future work.
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Fig. 1. Sliding-window approach with marked midpoints
(blue circles) and control points of the Bézier curves (red
squares) which are the endpoints of the different sections.

2.2. Step two: trajectory smoothing via Bézier curves

To reconstruct the continuous trajectory, a novel approach is
proposed based on the theory of Bézier curves. The goal is
to resolve the time ambiguity at the overlap points, in corre-
spondence of the boundaries between two adjacent sections.
Clearly, the piecewise-linear ML reconstruction presents a de-
fect: the point at the boundary of each section is estimated
twice, once as endpoint, and once as initial point of the next
section. Thus, despite the two points correspond to the same
time instant, erroneously they do not refer to the same spatial
position. This behavior is shown in Fig. 1. The idea is to join
point pairs through curves that have a “controlled” trajectory
using intermediate control points.

A Bézier curve is a parametric curve defined by Bern-
stein polynomial functions of a parameter t ∈ [0, 1]. Let
P0, P1, . . . , Pn be d-dimensional points; the general repre-

sentation of the Bézier curve is B(t) =
n∑
i=0

PiB
n
i (t) where

Bni (t) =
(
n
i

)
ti(1− t)n−i is the n-th order Bernstein polyno-

mial. The curve is determined by n − 1 control points2. The
cubic Bézier curve has thus two control points (P1, P2) and
two fixed points (P0, P3). Its parametric form is given by

B(t)=(1−t)3P0+3t(1−t)2P1+3t2(1−t)P2+t
3P3, t ∈ [0, 1].

Since the proposed sliding-window approach has only one
point of overlap, we consider a trajectory for which K is odd
and the following relationship holds true:

L = mK − (m− 1) (8)

where m is the number of sections in which the trajectory is
divided. Consider, for instance, to process the first two sec-
tions, each one consisting of K positions. Assuming ta cubic

2We list below the most important properties of a Bézier curve:
• it is always inside the polygon having as vertex the control point Pi,

being the Bernstein polynomials positive in [0,1];

• it stars in P0 and ends in Pn, having the polynomials in t = 0 and in
t = 1 such values, respectively.

• it can be divided in smaller curves that are Bézier curves as well;

• it is a straight line if, and only if, all points are aligned.
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Fig. 2. ECDF of mean error for Bézier-estimated trajectory.

Bézier curve, the functional points in these sections are: the
first midpoint, the endpoint of the first section, the first point
of the next section, and the second midpoint. The curve runs
over two midpoints, as shown in Fig. 1: red squares (extremes
of the sections) are the control points, while blue circles are
the midpoint which lie, by construction, on the curve.

This procedure is iterated for each section in which the
trajectory is divided. By processing the trajectory from the
first midpoint of the first section to the last midpoint of them-
th section, the first K−12 points of the trajectory and the last
K−1
2 points are not connected. In such sections, similarly, we

can apply the quadratic Bézier curve. In so doing, we solve
the time ambiguity by connecting every section of K points
to the next one, from midpoint to midpoint.

We need to discuss a final aspect: the Bézier curve dis-
cretization, or sampling. We investigated two possibilities: i)
uniform sampling of each Bézier curve, and ii) minimum-
distance association between ML estimate trajectory points
and Bézier curve. In the first case, the Bézier section is sam-
pled into K points corresponding to the uniform linear span
of the interval [0, 1] by the parameter t. The second case, in-
stead, requires to find the value of t corresponding to the point
on the Bézier curve B(t) at minimum distance from a ML es-
timated trajectory point. Let B(t) a parametric Bézier curve
and P a point of the ML estimate trajectory, we need to find
the value of the parameter t for which B(t) is as close as
possible to P ; this can be done by computing the normal to
the tangent, i.e., (B(t) − P )B′(t) = 0, where the derivative

is B′(t) = n
n∑
i=1

(Pi+1 − Pi)Bn−1i . Since such an approach

turned out to be more accurate than uniform sampling, we
adopted it in the proposed algorithm.

3. PERFORMANCE ASSESSMENT

The performance of the proposed algorithm are assessed by
means of both Monte Carlo simulations and real experiments.

3.1. Simulation setup

For the sake of simplicity, we keep fixed some of the param-
eters, in particular: M = 100 Monte Carlo trials, T = 0.5,
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Fig. 3. Comparison of three trajectory reconstrution methods.

L = 85,K = 15; therefore, we havem = 6 sections in which
the data are divided for trajectory estimation. The L noisy ob-
servations are affected by Gaussian error, assumed white in
this set of simulations, i.e., nk ∼ N (0d, σ

2Id). The results
of simulations are evaluated by varying the error standard de-
viation σ between 1 and 10 over different velocity values.

3.2. Multi-maneuver with stationary/moving conditions

Let us consider a complex trajectory in which the motion can
be divided into four phases, each one characterized by a dif-
ferent velocity as follows: for k ≤ 26 the velocity is v =
[2 1]>; for 27 ≤ k ≤ 32 the target is stationary (v = [0 0]>);
for 33 ≤ k ≤ 60 the velocity is v = [−0.3 0.4]>; finally, for
k > 60 the velocity increases as v = k [0.02 0.09]>.

In Fig. 2 we report the empirical cumulative distribution
function (ECDF) of the mean error for the Bézier-estimated
trajectory (with minimum distance sampling), for varying σ.
Interestingly, the curves exhibit a very narrow span, and for
small to moderate localization errors are able to provide an
accuracy of 1–2 m most of the times. Even for very large er-
rors on the observations (σ = 10, which means position errors
up to 30 m) the median error over the trajectory is below 5 m,
and below 6 m in 90% of the cases.

We now compare the performance of the proposed ML es-
timator with Bézier reconstruction against the RTS smoother
and KF. The reconstructed trajectory for the case of σ = 3
is shown in Fig. 3. It is interesting to observe how the pro-
posed algorithm is better than RTS smoother, despite the lat-
ter uses all measurements. Moreover, the RTS requires two
complete processing on the whole trajectory before providing
the estimate. The KF error is worse because only the observa-
tions up to the current time can be used. To be more precise,
the RMS value of the error over the whole trajectory is 1.74
meters for the proposed algorithm, which corresponds to an
improvement of 21% with respect to the RTS performance
(RMSE 2.20 m) and 58% with respect to the KF performance
(RMSE 4.11 m). The proposed algorithm, based on 2K data
batch each time, is thus able to provide the best performance.

1.9149

×105
1.9148

position y-axis

1.9147
1.9146

1.9145
1.91444.0038

4.0038

position x-axis

4.0037

×106

4.9446

4.9446

4.9446

4.9446

4.9447

4.9447

4.9447

4.9447

4.0037

×106

p
o
si
ti
o
n
z
-a
x
is

Measurements

Bezier curve with minimum-distance sampling

ML estimation without smoothing

Fig. 4. Quadcopter trajectory reconstruction.

3.3. Real experiments with quadcopters

We assess the performance of the proposed algorithm also on
real data, collected during the trials of the SafeShore project
at the North Sea, in May 2018. The case of a complex heli-
cal trajectory is considered (Fig. 4): the algorithm (blue tri-
angles) has an excellent ability to follow the measurements
(black dots), without being confused by the initial cluster of
points where the drone was hovering (quasi-stationary con-
dition). It is worth highlighting that the ML estimate (green
asterisks) would be a much worse approximation with broken
lines, and close to the aggressive maneuvers the time ambi-
guity would be unacceptable. The Bézier approximation, in-
stead, is smooth and accurate. The analysis of the RMSE, not
reported here due to space constraints, confirms the superior
performance of the proposed algorithm.

4. CONCLUSION

A novel trajectory reconstruction method for unknown mixed
stationary/moving conditions has been proposed. The algo-
rithm is able to cope with general trajectories, through a
sliding-window approach that splits the motion in piecewise-
linear sections where initial position and velocity are esti-
mated and, if the target was stationary, also the instant in
which the motion is observed. After such a first step of ML
estimation, a smoother version of the trajectory is recon-
structed by a novel approach based on the theory of Bézier
curves. The performance assessment has shown that the pro-
posed approach is advantageous compared to plain Kalman
filtering and, also, to RTS smoother.
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