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ABSTRACT

In this paper, we present a distributed array processing algorithm to
analyze the power output of solar photo-voltaic (PV) installations,
leveraging the low-rank structure inherent in the data to estimate
possible faults. Our multi-agent algorithm requires near-neighbor
communications only and is also capable of jointly estimating the
common low rank cloud profile and local shading of panels. To il-
lustrate the workings of our algorithm, we perform experiments to
detect shading faults in solar PV installations within a single ZIP
code. Additionally, we also derive a Bayesian lower bound on the
shading parameter’s mean squared estimation error. The results are
promising and show that we can successfully estimate the fraction of
partial shading in solar installations that can usually go unnoticed.

Index Terms— Distributed array processing, Bayesian estima-
tion, solar panel monitoring, partial shading

1. INTRODUCTION

Partial shading type of faults in solar panels reduce the power output
from solar panels to a value below their operating point since panels
are shaded due to dirt, soiling, buildings or tree shadows [1, 2]. As
a consequence, regular maintenance is of utmost importance in solar
PV panel arrays. However, there could be thousands of panels and
human inspection to determine what panels are soiled or shaded is
an impossible task. Besides, such soiling errors can go unnoticed for
a very long time and slowly degrade the performance of the system.

In this paper, we propose a distributed algorithm that can be
applied both in the context of a utility-scale array of solar panels
or multiple residential installations of solar panels within a certain
geographical region. The underlying principle is simple: all the
panels in a small enough geographical area see the same levels
of irradiance and cloudiness (c.f. Section 4 for corroborating evi-
dence). This lends to the problem a low-rank structure which we
utilize to detect the fraction of partial-shading or soiling of solar
panels in multiple installations. Since it is assumed that very few
panels are shaded, the infrequent nature of shading can be mod-
eled by assuming a prior distribution that promotes sparsity, such
as that of independent truncated exponentially distributed shading
coefficients. Near-neighbor communication based methods are a
natural extension to the existing state of the art which use just local
information for fault detection. Additionally, such communications
could be multipurpose and be used not just for fault detection but for
general monitoring and participation in demand-response programs
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as an aggregate load. This serves as motivation for a decentralized
algorithm that is used to find the common feature of cloud-induced
shading among the nodes with fewer number of data exchanges
whereas the specific partial-shading parameter is computed locally.
Under these assumptions, the problem of partial shading estimation
can be cast as a decentralized matrix decomposition into a rank-1
matrix, where the left singular vector represents the common attenu-
ation pattern due to the clouds, and it is estimated in a decentralized
way via average consensus among agents, while the right singular
vector (fractions of partial shading) is sparse and it is estimated
locally, alternating between the two estimates. We note that exist-
ing methods, such as the decentralized power iteration methods [3]
could be applied, but they would not leverage fully the structure
of the problem. We can think of our problem as an instance of
decentralized dictionary learning [4] where the sparse coding step
is replaced with a maximum aposteriori (MAP) estimation of shad-
ing parameter. The Bayesian framework makes it also possible to
provide performance benchmarks. For this purpose we derive an
extension of Bayesian Cr̀amer Rao lower bounds (BCRB) for the
partial shading parameter mean squared estimation error that, unlike
the ones used in the context of Bayesian learning [5, 6], applies
to parameters with a finite support prior distribution that may not
satisfy certain regularity conditions [7].

Fig. 1. Schematic showing the
communication links between
different solar panel installa-
tions for distributed estimation.

Related works: Many pa-
pers address the fault detection
problem. They range from uti-
lizing panel specific electrical
characteristics such as their op-
erating points that depend on
solar irradiance levels [8] to ap-
plying machine learning algo-
rithms [9, 10, 11] including k-
means clustering [2] and min-
imum covariance determinant
[1, 12] methods and general
statistical methods like multi-
resolution signal analysis [13,
14]. They focus mainly on a
single installation with an array of solar PV panels. However, in
this paper, we take advantage of structure in solar data from differ-
ent installations to estimate the fraction of partial shading instead of
using additional data like irradiance or temperature.

The paper first introduces the distributed algorithm more gener-
ally in Section 2 and then presents the application of the introduced
framework for partial shading estimation in solar PV panels in Sec-
tion 3. Solar data from multiple residential rooftop PV panel instal-
lations within a ZIP code is used to test the efficacy of the proposed
algorithm and results are presented in Section 4.

4440978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



2. SYSTEM MODEL

Let a discrete set of data at time indices n = 1, 2, . . . N from loca-
tions ` = 1, 2, . . . L be available. Stacking them column-wise we
get a matrix, Y ∈RN×L. It is postulated that Y has a specific low-
rank structure such that each column of the matrix is a scaled version
of the other by a certain attenuation coefficient, thereby giving the
following model:

Y =x(1−α)T +
[
η1 η2 · · · ηL

]
,η` ∼ N (0,Σ) (1)

where x ∈ RN and belongs to a convex constraint set C, 1 is a
vector of ones with dimension L and α ∈ RL×1. It is assumed that
noise covariance matrix Σ is diagonal and the scaling vector α is
sparse with the support of non-zero entries being finite. The goal is
to estimate x,Σ and α using Y . The problem statement is,

min
x,α,Σ

1
2

∑L
`=1

∥∥∥Σ− 1
2 [y`−(1−α`)x]

∥∥∥2
2

+ λ ‖α‖1

subject to x ∈ C, α ≤ α` ≤ α, ` = 1, 2, . . . L (2)

In our setup, there is no central entity to estimate x and Σ so the
agents have to do it in a decentralized fashion. From (2), the prob-
lem can be treated as a variant of decentralized matrix factorization
problem where the rank of the matrix is exactly 1.

2.1. Solution approach

We use an alternating minimization method since the cost is non-
convex. Firstly, given α and Σ, maximum likelihood (ML) estimate
x̂ML, is computed in a distributed manner. Then, given x̂ML and
Σ we update α` at location ` with the maximum aposteriori (MAP)
estimate of α` by imposing as a prior a truncated exponential distri-
bution, with support between α and α:

p(α`)=C−1λe−λα` , C = e−λα − e−λα, α ≤ α` ≤ α. (3)

Lastly, given x and α, we update covariance matrix Σ using resid-
ual error and average consensus based method.
Decentralized ML estimate : Let the network of sensors be de-
scribed by the graph G = (V, E) where V is the set of vertices and
E the set of edges/connections. Then, cost for each agent at ` is,

f`(x, α`) =
1

2
(y` − (1− α`)x)T Σ−1 (y` − (1− α`)x)

and total cost is F (x,α) = 1
2

∑L
`=1 f`(x, α`). We use the de-

centralized Frank-Wolfe [15] method (note that any distributed opti-
mization algorithm is viable) to estimate x. Assuming that the val-
ues of α` and Σ are fixed for this step, average consensus (AC) is
employed to update the estimate of vector x as well as the gradient,∑L
`=1∇xf`(x, α`). For AC, we use the Metropolis-Hasting update

which provides the following weight matrix:

W =I−M1+M , [M ]ij =

{
(max{di, dj})−1 ,(i, j) ∈ E
0,(i, j) /∈ E

where di, dj are degrees of nodes i and j in the graph G and I is the
identity matrix of sizeL. The steps of the decentralized Frank-Wolfe
method are as follows:

1. Begin with an estimate of x`(0) and α`(0) at each ` . Let
X(0) ,

[
x1(0) x2(0) . . . xL(0)

]
∈ RN×L.

2. A step of AC is carried out,X(t) = X(t− 1)W .

3. At sensor `, the gradient is calculated:

∇xf`(x`(t), α`)=(1−α`)Σ−1 (y`−(1−α`)x`(t)) .

The full gradient at time t, ∇xF (x(t),α), is unavailable.
Hence the local estimate of the gradient at ` is given by

∇xF t` (x`(t)) = ∇xF t−1
` (x`(t− 1)) +∇xf`(x`(t), α`)

−∇xf`(x`(t− 1), α`). (4)

Then, the AC step is employed,

∇xF t+1
` (x`(t))=

∑
j [W ]`,j∇xF

t
j (xj(t)) (5)

4. To perform the constrained optimization, Frank-Wolfe (FW)
update [15] is used which involves projection to the constraint
space as a linear optimization problem. General FW step is:

x`(t+ 1)← (1− τt)x`(t) + τtb
`
t (6)

where b`t := arg min
b∈C

〈b,∇xF t+1
` (x`(t))〉 (7)

where τt = 2/(t + 1) is the step size. From [15], it is known that
the decentralized optimization problem to estimate x converges to a
stationary point since the original problem is non-convex (bi-convex)
with respect to both x and α.
Updating α: Consider the second step of alternating minimization,
i.e. that of estimating α`. From (1) (dropping time index t),

y` = (1− α`)x` + η`, η` ∼ N (0,Σ). (8)

Introduce a modified scalar measurement, ỹ`, by multiplying
xT` Σ−1 on both sides of (8) as ỹ` , 1−

(
xT` Σ−1y`

/
xT` Σ−1x`

)
.

Then,

ỹ` = α` + η̃`, η̃` ∼ N
(
0, γ2

`

)
, γ2

` =
(
xT` Σ−1x`

)−1

. (9)

With prior on α` as in (3), MAP estimate of α` at iteration t is

α̂`(t) =


α, ỹ` ≤ α+ λγ2

`

ỹ` − λγ2
` , α+ λγ2

` ≤ ỹ` ≤ α+ λγ2
`

α, ỹ` ≥ α+ λγ2
`

(10)

Estimation of Σ: We assume that covariance matrix Σ is diagonal:

Σ = diag(σ)I, i = 1, 2, . . . , N (11)

Then, ML estimate of [σ]i at time t is,

[σ]i (t) = L−1∑L
`=1

(
[y`]i − α` [x`(t)]i

)2
. (12)

AC can be employed on the N variances by letting

[σ`]i (t) =
(
[y`]i − α` [x`(t)]i

)2
, ` = 1, 2, . . . L (13)

One iteration of AC isQ(t+ 1) = Q(t)W where

Q(t) ,
[
σ1(t) σ2(t) . . . σL(t)

]
. (14)

Algorithm 1 describes the steps of the proposed distributed Bayesian
estimation method. Next, we present a lower bound for estimation
error of α` given x and Σ.
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Theorem 1 (Bayesian CRB for finite support prior). A lower bound
for the mean squared error of the MAP estimator in (10) given x and
Σ is

Eα`,ỹ`

[
(α̂` − α`)2

∣∣∣∣x,Σ] ≥ γ2
` (1− ν)2

λ2γ2
` + 1

(15)

where ν =(p(α)+p(α))
[
γ`φ(λγ`)+λγ2

`Φ(λγ`)
]
+Rp(α)

− p(α)

[
γ`φ

(
λγ`−

R

γ`

)
+ (λγ2

` −R)Φ

(
λγ`−

R

γ`

)]
− p(α)

[
γ`φ

(
λγ`+

R

γ`

)
+ (λγ2

` +R)Φ

(
λγ`+

R

γ`

)]
,

Φ(x)=

∫ x

−∞
e−

z2

2 dz, φ(x) = (
√

2π)−1e−x
2/2, R = α− α.

Proof is omitted due to lack of space. Since the bound applies
to a case when x and Σ are known exactly, it is not likely to be tight
when the estimation error in x and Σ are significant. This is seen in
the numerical results.

Algorithm 1 Distributed Bayesian estimation
Input: x`(0), α`(0),σ`(0) ∀`, T,M andW .

1: while iter ≤M do
2: for t = 0 : T − 1 do
3: X(t+ 1)←X(t)W
4: x`(t+ 1)← (1− τt)x`(t+ 1) + τtb

`
t ∀` (7)

5: Update α̂`(t) ∀` from (10)
6: end for
7: for k = 1 : K do
8: [σ`]i (1) =

(
[y`]i − α`(T ) [x`(T )]i

)2
, ` ∈ Li

9: Q(k + 1) = Q(k)W

10: end for
11: x`(0)← x`(T ), α`(0)← α`(T ) , σ`(0)← σ`(K), ∀`
12: iter = iter+1

Output: x`, α`,σ` ∀ `

3. PARTIAL SHADING ESTIMATION IN SOLAR PANELS

The system model described in Section 2 can be applied to detect
partial shading type of faults.
Model for small utility-scale farm: If the area covered by the pan-
els in a farm is relatively small, we can assume that the cloud cover
induced attenuation of solar power is the same across each panel j
at a given time instant n on day d. Assuming that all the panels have
uniform characteristics, the solar power data matrix Yd ∈ RN×P
constructed using power measurements from panels j = 1, . . . , P
for times n = 1, 2, . . . N on a day d is

Yd = wd × (1−αd)T , wd ∈ RN , αd ∈ RP (16)

wherewd is the vector of power measurements on day d. If the pan-
els are operating normally (without shading faults) then α = 0. If
not, the support of α corresponds to panels which are affected by
shading/soiling.
Model for installations in a ZIP code: To detect faults among mul-
tiple installations within a ZIP code using solar power data w`,d[n]
at location ` = 1, 2, . . . L, time instant n = 1, 2, . . . N and day
d, normalization by the sunny day solar power pattern, s`,d[n], is
necessary to assume the low-rank structure. In general this pattern
changes slowly with the season and can be estimated locally for day

0 2 4 6 8 10 12 14 16

0

10

20

location `

σ
(Y
d
)

Fig. 2. Singular values of measurement matrix Yd: low rank with
one dominant singular value. Solar power data from PV panels at
different locations within a ZIP code.

d [16]. In the absence of faults the data matrix Yd ∈ RN×L has en-
tries [Yd]n,` = w`,d[n]

/
s`,d[n]. where x`,d[n] , w`,d[n]

/
s`,d[n] is

interpreted as the attenuation due to cloud cover. This attenuation is
approximately the same within a ZIP code. Further evidence is pro-
vided in Fig. 2 that shows the singular values of the matrix Yd. Due
to partial shading fault in the system, further attenuation of power
is observed. It then becomes important to distinguish the cause of
attenuation which could be due to cloud cover and/or partial shad-
ing. Let the common attenuation vector for a given day be denoted
as xd ∈ RN and fraction of shading at each location be α`,d. Then,
the problem of partial shading detection can be modeled similar to
(1) where the measured attenuation at location `, y`,d ∈ RN is the
product of cloud cover induced attenuation and partial shading fault,

y`,d = (1− α`,d)xd + η`,d, Yd = xd × (1−αd) (17)

Thus, the problem of fault detection is to estimate the common at-
tenuation vector xd in order to determine αd ∈ RL. Note that the
model for Yd is same as in (1). We assume that there are fewer lo-
cations with faulty panels than the total number of locations. This
promotes sparsity in αd. Also, attenuation by definition is less than
1. Therefore, 0 � αd � 1 and 0 � xd � 1.

The estimation algorithm starts with random initialization for all
parameters. The FW update for xd is from (6) and b`t is

[
b`t

]
i

=

{
1,
[
∇xF t+1

` (x`,d(t))
]
i
< 0

0,
[
∇xF t+1

` (x`,d(t))
]
i
≥ 0

. (18)

The update to α`,d is from (10) where α = 0, α = 1.

4. NUMERICAL RESULTS

Simulations on synthetic data: Synthetic data is generated accord-
ing (1). We generate parameter α` using (3) with α = 0, α = 1.
The noise covariance matrix is simulated as Σ = σ2I . Parameter
x has each entry drawn at random, [x]i ∼ U(0, 1) where U(.) is

−20 −10 0 10 20

10−3

10−2

10−1

σ2 (in dB)

E α
ỹ

{ (α
−
α̂
)2

}

Lower bound MSE

Fig. 3. Comparison of lower bound with MSE for synthetic data
when the prior of α` is constrained to be between 0 and 1 which is
what we require in the real-world example of fault detection in solar
PV panels.
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Fig. 4. Results for April 29 and April 16, 2014 when (a) no fault introduced and (b) when faults are introduced according to (3) . In (c),
attenuation vector for all locations, x` is plotted prior to introduction of faults. The estimated x is plotted in red after the introduction of
faults.
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Fig. 5. Comparison of lower bound with mean squared error for
every day d for (a) λ = 3 and (b) λ = 0.01. Examples of cloudy,
partly cloudy and sunny days are marked on both plots.

uniform distribution. Graph G = (V, E) is constructed as a Erdos-
Renyi graph with connectivity p = 0.3. Fig.3 shows lower bound on
the estimation error. As seen, the bound is not tight. This is due to
the non-convexity of the problem due to which it only converges to
a stationary point [15] which compounds the error in estimating α`.

Fault detection for solar panels: We have solar power data
from SolarCity ordered by ZIP code. Faults (amount of partial shad-
ing) are generated using the prior distribution on α`,d from (10) and
introduced artificially in the data. We apply the proposed estimation
technique to identify installations with partial shading faults within a
ZIP code. The algorithm returns a value of α`,d which is the fraction

of soiling/ partial shading. Firstly, the results of estimation of α` are
shown for two days-one sunny with little attenuation and other with
varying cloud cover in Fig.4. As expected, the value of α`,d ≈ 0, ∀`
for both the days when no fault is introduced. Then, the estimated
partial shading α̃` and the introduced shading fault are plotted. The
estimated attenuation vector for the day is also plotted.

Lower bound on partial shading estimation error: We run
simulations to test the Bayesian lower bound in (15) while esti-
mating the partial shading parameter α`,d. To compute the lower
bound for each day, the common attenuation vector, x is the average:
x = L−1Y 1T assuming there is no fault in any panel. This only
serves as a benchmark to compute the lower bound on mean squared
error (MSE) of α`,d, ` = 1, 2, . . . , L and not used in the process of
estimating α`,d. In Fig. 5 different amount of faults are introduced
with λ = 0.01 and λ = 3 for all days to compare the proximity
of the lower-bound to MSE with changing weather conditions. As
examples, cloudy, partly cloudy and sunny days are marked on the
plot to show that the error on partly cloudy and cloudy days is higher
than on sunny days in general. On partly cloudy days, the low rank
structure is not exact due to the presence of uncoordinated spikes in
power at different locations due to attenuation from local clouds.

5. CONCLUSIONS

This paper introduced a distributed Bayesian estimation technique
and utilized it to estimate partial shading fraction in rooftop solar
PV installations. A lower bound on the mean squared error incurred
in estimation of shading fraction was also derived. The proposed
fault detection method was tested on data from multiple solar panel
installations within a ZIP code in California and the results were sat-
isfactory. Timely action to alleviate shading can lead to potential
reduction in inverter transients. Future work involves developing an
online version of the algorithm and extending the application to util-
ity scale installations spread over larger geographical regions where
rank 1 assumption needs to be relaxed and cloud motion dynamics
must be taken into consideration.
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