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ABSTRACT
Unlabeled detection is an emerging paradigm for modern de-
centralized decision systems faced with big-data applications,
and for all those applications in which data must be fused
without exploiting their identity, due to the lack of provenance
labels, or to uncontrolled data shuffling. Our focus here is on
binary alphabets, and we ask: If our data have been shuffled in
an unknown way, can a reliable decision about the underlying
state of nature be made? Should the decision be made after an
attempt to estimate the lost labels? And do there exist easily
implementable decision rules? In answering these questions,
we gain much insight: We show that two greedy algorithms
previously introduced in the literature are equivalent to the
GLRT, whose performance can be quite poor, and the detec-
tor known as ULR is equivalent to a simple counting rule. A
new detector based on the central limit theorem is simply im-
plementable and offers close-to-optimal performance in many
scenarios of practical interest.

Index Terms— Unlabeled Detection, Shuffled Data, Un-
known Permutation, Big Data, Large Sensor Networks.

1. INTRODUCTION

Let us begin with a motivating example. Suppose there are
two boxes, H1 and H0, each containing n coins. According
to H1, half the coins are unfairly weighted to show a “head”
with probability 0.9 and the other half conversely show a head
with probability 0.1. Under H0 all coins are fair. A box is
selected and the coins inside that are tossed: the total number
of heads, say it kx, is revealed. Can one infer which box
was selected? In both cases the expected number of heads is
n/2, so a threshold test on kx is of little use. On the other
hand, less variability in kx would be expected with H1, and
therefore with a small value of |kx − n/2| seems reasonable
to chooseH1.

A different (generalized likelihood ratio test, GLRT) ap-
proach to making the decision is to consider the specific
sequence of heads and tails. With box H1, the (maximum
likelihood, ML) assignment between observed heads and the
coins they came from can be made with few errors, yielding
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0.9n−|kx−n/2| 0.1|kx−n/2| as the likelihood. With box H0,
all assignments are equally likely but anyway irrelevant: the
likelihood is 0.5n in all cases.

The heads and tails in our boxes exemplify unlabeled
measurements: the observer has access to the measurements,
but has no idea which coin (fair, biased head-light or head-
heavy) produced each one. Three approaches are discussed:
ignore labels and make a threshold test using kx (useless, in
the example); test if kx is close to n/2 (this is based on CLT,
as we shall show), and the GLRT (assign the labels). In the
case just given, the GLRT is the same as with CLT (central
limit theorem). However, suppose instead that the probabili-
ties of head for the coins in box H1 are 0.99 and 0.1. Does
the aforementioned ML assignment procedure (the GLRT)
still work? It turns out that the GLRT performs poorly; and
in fact kx itself seems a (more?) sensible decision statistic.

Admittedly, in these examples where there are at most two
different types of coins in each box, making the optimal de-
cision is easy, because the statistical distribution of the ob-
served kx is available in simple form. But with many different
types of coins this is no longer true. In principle, the statistical
characterization of kx is still known, but is not tractable and
no closed-form expression for the optimal decision statistic is
available. The following questions arise: What are reason-
able decision criteria? In what cases simply comparing kx
to a threshold level represents an acceptable criterion? Is it
always reasonable to build the decision statistic by first infer-
ring what is the unseen head/tail sequence?

1.1. Relation to Prior Work
The stated problem falls under the wide umbrella of sig-
nal processing with unlabeled data, an emerging paradigm
with applications, among other fields, in large sensor net-
work faced with big-data analysis. Signal processing with
unlabeled data refers to signal processing tools specifically
designed when the data under analysis lack of a time/space
reference and can be seen as subject to an unknown permu-
tation before becoming available for processing. Studies in
this field have been pioneered by [1,2], with roots that can be
traced back to [3]. Recent contributions include [4–8]. Closer
to this article, because focusing on inference problems, are
the works in [9–12]. The theoretical contribution of [12] is to
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derive the asymptotically optimal performance for detection
by unlabeled data, in the limit n → ∞. The authors of [12]
also propose sub-optimal detection algorithms for finite n.

Our contribution is to explore the detection problem with
unlabeled data in the special case of binary alphabets. We
find closed-form expressions for some of the detectors pro-
posed in [12], providing new insights. Two greedy algorithms
are shown to be equivalent to the GLRT (generalized likeli-
hood ratio test), and a closed-form expression for this latter is
offered. A low-complexity detector termed ULR (unlabeled
likelihood ratio) has been proposed in [12], and here we find
that the ULR decision is simply based on comparing kx to
a threshold. Finally, we develop an approximation based on
CLT, which is shown to achieve close-to-optimal performance
in many cases of practical interest.

2. PROBLEM FORMULATION

Let X = {0, 1} be the alphabet of the observations, and let
us start from the case in which the detector observes the la-
beled vector Xn = (X1, . . . , Xn). We use capital letters for
random quantities, such as Xn, and the corresponding lower-
case xn for their realizations. Let pi = P1(Xi = 1) and
qi = P0(Xi = 1), where Pj is the probability operator under
hypothesis Hj , j = 0, 1. We assume 0 < pi, qi < 1, for
all i = 1, . . . , n. Denoting by ri either pi or qi, with the as-
sumptions that data are independent under both hypotheses,
we have Xn ∼

∏n
i=1 r

xi
i (1 − ri)1−xi , and the statistical test

can be formalized as follows:

H1 : ri = pi,
H0 : ri = qi,

i = 1, 2, . . . , n. (1)

The optimal detection statistic, in log-likelihood form, is

n∑
i=1

[
xi log

pi
qi

+ (1− xi) log
1− pi
1− qi

]
. (2)

When we speak of “detection statistic” we mean a quantity
that, compared to a threshold, leads to a decision in favor
of H1 if the threshold is strictly crossed, and for H0 other-
wise.

With unlabeled (i.e., shuffled) data we are faced with a
binary hypothesis test in which we get the values taken by
the n observations, but the position of these observations in-
side vector Xn is lost: there is no way to associate an ob-
served value to its original position. This can be formal-
ized by saying that we observe one of the n! permutations
of the entries of Xn, but we do not know which. In formula:
Xn ∼

∏n
i=1 r

xπ(i)

i (1−ri)1−xπ(i) , where π(i) ∈ {1, . . . , n} is
the new index assigned to the sample originally appearing at
the i-th position, upon applying the permutation. Thus, with
unlabeled data, we have to solve test (1) when π is unknown.
The lack of knowledge of the actual sample positions inside
vector xn implies that only the type of vector xn is available,
namely, we observe the number kx of ones appearing in xn.

In this situation, one possible approach is to resort to the
GLRT [13], which amounts to estimating with the ML crite-
rion the unknown permutation, separately under H1 and un-
der H0, and then computing the (log of the) ratio of the like-
lihoods, with the estimated permutations in place of the un-
known ones. Denoting by π̂1 and π̂0 the two ML estimates
underH1 andH0, respectively, the GLRT statistic is∑n

i=1

[
xπ̂1(i) log pi + (1− xπ̂1(i)) log(1− pi)

]
−
∑n
i=1

[
xπ̂0(i) log qi + (1− xπ̂0(i)) log(1− qi)

]
.(3)

Note that π̂1 can be written as

arg max
π

n∑
i=1

[
xπ(i) log pi + (1− xπ(i)) log(1− pi)

]
, (4)

and a similar expression holds for π̂0, with pi replaced by qi.

3. DETECTORS FOR SHUFFLED DATA

Let us consider the 2-by-n matrix(
log p1 log p2 log p3 . . . log pn

log(1− p1) log(1− p2) log(1− p3) . . . log(1− pn)

)
(5)

and suppose that we observe the number of ones kx appear-
ing in xn. From (4) we see that computation of π̂1 amounts
to selecting kx distinct columns over the first row of (5) and
other n − kx distinct columns over the second row, in such a
way that the sum of the selected matrix entries is maximized.
Likewise, computation of π̂0 is equivalent to maximizing the
sum of the entries obtained by selecting kx distinct columns
over the first row and other n − kx distinct columns over the
second row of:(

log q1 log q2 log q3 . . . log qn
log(1− q1) log(1− q2) log(1− q3) . . . log(1− qn)

)
.

(6)
The following proposition shows how these maximizations
can be done.
PROPOSITION 1 (Computing π̂1, π̂0) The ML estimate π̂1 is
obtained by selecting the kx distinct columns with largest en-
tries over the first row of (5), and the remaining n−kx distinct
columns over the second row. The ML estimate π̂0 is obtained
similarly, by considering matrix (6) in place of matrix (5). �

Proof: The proof is elementary. Let (p(1), p(2), . . . , p(n)) be
the decreasing ordered version of (p1, p2, . . . , pn), namely
p(1) ≥ p(2) ≥ · · · ≥ p(n). If π̂1 is obtained as stated in
Proposition 1, the corresponding log-likelihood [see (4)] is:

kx∑
i=1

log p(i) +

n∑
i=kx+1

log(1− p(i)), (7)

and we have to show that no other permutation yields a value
larger than (7). A different permutation amounts to moving
one or more indices from the first sum appearing in (7) to
the second, and vice versa, so that the number of indices in
the two sums remains unchanged. It is seen that any such
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modification would decrease, or leave unchanged, the value
of (7). Indeed, suppose that index ` ≤ kx would be moved
to the second sum, and m > kx, to the first. The value of (7)
would be changed by log p(m) − log p(`) + log(1 − p(`)) −
log(1− p(m)) ≤ 0. The same argument applies underH0. •

The structure of the GLRT is given by the following
proposition where where void sums are defined as zero.
PROPOSITION 2 (GLRT) The GLRT statistic is given by

SGLRT =

kx∑
i=1

log
p(i)

q(i)
+

n∑
i=kx+1

log
1− p(i)

1− q(i)
. (8)

�

Proof: Follows immediately from (3) and (7). •
For the case of general finite alphabets, an alternative to

the GLRT has been proposed in the literature under the name
of ULR (unlabeled likelihood ratio), see [12]. When observa-
tions are binary, the ULR statistic reduces to kx log p̄

q̄ + (n−
kx) log 1−p̄

1−q̄ , where p̄ = 1
n

∑n
i=1 pi, and q̄ = 1

n

∑n
i=1 qi. The

ULR statistic can be equivalently cast in the form

SULR = sign(p̄− q̄) kx, (9)

where the signum function is defined as: sign(z) = 1 for
z > 0, sign(z) = −1 for z < 0, and sign(0) = 0.

In [12] two greedy approaches, named Algorithm-A and
Algorithm-B, have been also proposed for labeling.
PROPOSITION 3 (Algorithms) With binary observations, both
algorithms in [12] find the exact ML estimates π̂1, π̂0. �

3.1. Finite Number of Classes

In practical applications, when n is large, it makes sense to
assume that the n-vectors (p1, . . . , pn) and (q1, . . . , qn) con-
tain only a relatively smaller number of different entries. This
happens, for instance, in sensor networks where a few sen-
sors make many independent measurements each, and these
data are sent to a fusion center without preserving their prove-
nance. Data coming from the same sensor share the same
statistical distribution, which, presumably, is instead different
from sensor to sensor. With m sensors, we may speak of m
classes of measurements. Accordingly, suppose that

p = ( pc1, . . . , pc1︸ ︷︷ ︸
n1

, pc2, . . . , pc2,︸ ︷︷ ︸
n2

. . . . . . , pcm, . . . , pcm︸ ︷︷ ︸
nm

), (10)

q = ( qc1, . . . , qc1︸ ︷︷ ︸
n1

, qc2, . . . , qc2,︸ ︷︷ ︸
n2

. . . . . . , qcm, . . . , qcm︸ ︷︷ ︸
nm

), (11)

with
∑m
`=1 n` = n. Note that the subscript ci in (10)-(11)

denotes the i-th class.
In the m-class case of (10)-(11), it is very simple to char-

acterize statistically kX. Indeed:

kX =

n1∑
i=1

Xi +

n1+n2∑
i=n1+1

Xi + · · ·+
n∑

∑m−1
k=1 nk+1

Xi, (12)

so that, underH1 (respectively,H0), the distribution of kX is
the convolution of m binomial distributions with number of
trials n` and success probability pc` (resp. qc`), ` = 1, . . . ,m.
Distributions of this type appear frequently in reliability [14],
economy/finance [15–17], and healthcare [18] contexts. In
general, they do not admit a closed-form expression, and var-
ious approximations have been developed, see [19].

Denoting by Pj(kX = kx) the PMF (probability mass
function) obtained by this convolution, under Hj , j = 0, 1,
the optimal detection statistic for unlabeled detection is (for
simplicity, we do not consider randomized tests [20]):

SOPT =
P1(kX = kx)

P0(kX = kx)
. (13)

The explicit form of the PMFs Pj(kX = kx), j = 0, 1,
is difficult to manipulate, even for m in the order of few
units. However, when min{n1, . . . , nm} is large enough,
a substantial simplification is obtained by invoking the De
Moivre-Laplace theorem for approximating the CDF (cu-
mulative distribution function) of each binomial distribution
with the Gaussian CDF. Under H1 we get (with obvious no-
tation) kX ∼ N

(
µ1, σ

2
1

)
, where µ1 =

∑m
`=1 n` pc` = np̄,

and σ2
1 =

∑m
`=1 n` pc` (1 − pc`). The equivalent of these

parameters under H0, namely µ0 = nq̄ and σ2
0 , are obtained

by replacing pc` with qc`, ` = 1, . . . ,m. De Moivre-Laplace
theorem is an instance of the CLT, and CLT allows us to
approximate the PMF (not only the CDF) of kX with the
samples of the Gaussian density. This is because the random
variable kX is of lattice type [21]. Accordingly, an approxi-
mation of the optimal detection statistic is given by the ratio
f(kx;µ1, σ

2
1)/f(kx;µ0, σ

2
0) where f(z;µ, σ2) represents the

Gaussian PDF (probability density function) with mean µ and
variance σ2, computed at the point z. Namely, the decision
statistic can be cast in the form:

SCLT =

(
kx − nq̄
σ0

)2

−
(
kx − np̄
σ1

)2

. (14)

Clearly, if σ0 = σ1, then SCLT is equivalent to SULR. Note
that, for the special case of m = 2, computing the exact PMF
of kX is straightforward because only one convolution is re-
quired.

4. NUMERICAL EXPERIMENTS

Let Pm = P1(S ≤ γ) be the probability of a miss, and
Pf = P0(S > γ) the probability of false alarm, where S
denotes generically one of the previously introduced detec-
tion statistics. The value of Pm versus Pf can be obtained
by varying the threshold level γ, and we now investigate the
relationship Pm vs. Pf , starting with two, somehow extreme,
examples.

Suppose we have n = 200 observations, and m = 2
classes, with n1 = 100 and n2 = 100. Suppose also that data
under H0 are equiprobable and IID (independent and iden-
tically distributed). This means that under H0 data labeling
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Fig. 1. Results of computer simulations by using 104 Monte Carlo runs for each point. Points are joined for easier visualization.
Left: An experiment with m = 2 classes and n1 = n2 = 100. Detection performance with qc1 = qc1 = .5, and three values
of p: in the direction of the arrows we have (pc1 = .9, pc2 = .1), (pc1 = .95, pc2 = .05), and (pc1 = .99, pc2 = .01). Middle:
The same as in Left, with the values of p: (pc1 = .9, pc2 = .1), (pc1 = .95, pc2 = .1), and (pc1 = .99, pc2 = .1). Right:
An example with m = 10 classes, each with n/m entries, and n = 50, 100, 200, following the direction of the arrow. The
probabilities qci, i = 1, . . . , 10, are generated uniformly at random in the interval (.45, .55), and pci, i = 1, . . . , 10, uniformly
at random in (δ, δ + 0.1). Note that in all cases the curves of SCLT, SGLRT and SULR are perfectly superimposed.

carries no information, and any permutation of the data results
in one and the same statistical distribution for Xn: P0(Xi =
1) = 1/2, ∀i = 1, . . . , n. With the notation adopted in (10)-
(11), we have qc1 = qc2 = .5. UnderH1, let us consider three
scenarios, (pc1 = .9, pc2 = .1), (pc1 = .95, pc2 = .05), and
(pc1 = .99, pc2 = .01). Note that in all cases p̄ = q̄ = 0.5.

Figure 1-left shows the curves Pm versus Pf for SOPT,
SCLT, and SGLRT, see eqs. (13), (14), (8), respectively. The
performance of SOPT and SCLT coincide, meaning that the
Gaussian approximation works well. It is remarkable that the
curves of these detectors also coincide with that of SGLRT.
This can be explained by noting that in this example µ0 =
µ1 = n/2, σ2

0 = n/4, σ2
1 = npc1(1 − pc1), and then the

CLT statistic (14) is equivalent to compare −|kx − n/2| to
a threshold. Moreover, for this example, the GLRT statistic
in (8) reduces to the form

− |kx − n/2| log
pc1

1− pc1
+ n log(2 pc1), (15)

revealing that SGLRT is equivalent to SCLT. The curve of the
SULR is not shown in Fig. 1-left because, as we see from (9),
the ULR detector no longer makes sense when p̄ = q̄.

In the second experiment, we still assume qc1 = qc2 = .5,
and we set (pc1 = .9, pc2 = .1) as before, and then (pc1 =
.95, pc2 = .1), and (pc1 = .99, pc2 = .1). In the last two
cases p̄ is slightly larger than q̄, a small difference with a large
impact. As seen in Fig. 1-middle, the performance of SOPT

and SCLT still coincides. As to the ULR, that the larger is p̄
with respect to q̄, the more nearly optimal is the ULR. In this
situation, indeed, the number of ones makes a clear difference
between the hypotheses, and the ULR detector exploits that.

The behavior of SGLRT changes drastically. For pc1 =
.95 and .99, we see that the GLRT performs very poorly,
and for pc1 = .99 is biased, in the sense that, at least for

small values of Pf , the test would work better by inverting
the decisions [20, p. 47]. This can be justified by computing
Ej [SGLRT] under Hj , j = 0, 1. With n1 = n2 = n/2, n =
200, pc1 = .99, pc2 = .1, qc1 = qc2 = qc = .5, the computa-
tion is straightforward, and we find that E1[SGLRT] is slightly
smaller than E0[SGLRT] (≈ 107.31 against ≈ 107.95).

The third experiment, described in the figure caption,
shows that, even in the presence of modest differences be-
tween the vectors (pc1, . . . , pcm) and (qc1, . . . , qcm), all the
decision rules may share the same performance, which im-
proves by increasing this difference, and by increasing n.

5. SUMMARY
Unlabeled detection with binary data is special compared to
the case of alphabets with arbitrary (finite) cardinality. The
MLE of the permutations can be obtained from Algorithm-A
and -B in [12] in general contexts. But in the binary case,
the MLE is explicit. It requires matching according to the
ordered versions of (p1, p2, . . . , pn) and (q1, q2, . . . , qn), as
stated in Proposition 1; and the GLRT follows as shown in
Proposition 2. The structure of the GLRT in (8) sheds light
on its behavior, which can be surprisingly poor.

Computational simplicity has been advocated as the major
motivation for the adoption of the ULR detector. As shown
by simulations in [12], its performance is in many cases quite
satisfying, perhaps unexpectedly. In the binary case, in the
light of (9), it is easy to figure out in what cases the ULR
works. In the presence of observations from m classes, the
CLT approximation (14) works fine even for moderately small
values of min{n1, . . . , nm}. It exploits both µi and σi. When
σ0 ≈ σ1, SULR performs approximately as SCLT. On the
other hand, with µ1 ≈ µ0, SULR loses efficacy, because it is
blind to the change-in-variance, and the difference with SCLT

may become significant.
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