
AN EFFICIENCY-IMPROVED TDOA-BASED DIRECT POSITION DETERMINATION
METHOD FOR MULTIPLE SOURCES

Kegang Hao and Qun Wan

Department of Information and Communication Engineering
University of Electronic Science and Technology of China

ABSTRACT

It is well known that the direct position determination (D-
PD) method outperforms the most common two-step local-
ization method when the signal-to-noise ratio (SNR) is low.
The advantage comes from the fact that the DPD method
avoids estimating the intermediate parameters for localiza-
tion. However, the DPD method has heavy computation load
because of depending on exhaustive searching, especially in
the multiple sources localization scenario where the problem
is a high-dimensional optimization problem. In this paper, we
constructed a cost function using the orthogonal relationship
between received signals and noise. We reveal that the na-
ture of the cost function is to verify the column-correlation of
the matrix. Finally, we got the Determinant-based cost func-
tion which is more efficient and requires less computation re-
sources in searching phase.

Index Terms— Direct position determination, efficient
multiple sources localization, TDOA

1. INTRODUCTION

Multiple sources localization has been study for several
decades and developed as the demand of Location-Based
Services (LBS) in communication systems grew explosive-
ly. The emerging Technology such as Internet of Cars and
Unmanned Aerial Vehicle require much more location infor-
mation which promotes the development of multiple sources
localization Technology ulteriorly. The classical localization
methods are two-step processing [1, 2]. Firstly, intermedi-
ate parameters that rely on the locations of the sources are
estimated from the received signals. These parameters are
usually the angle of arrival (AOA), TDOA, Doppler frequen-
cy shift (DFS) or received signal strength (RSS). And then the
previously estimated parameters are used to estimate the lo-
cation of sources, using geometric or statistic considerations.
The two-step method is suboptimal because the intermediate
parameters are estimated by each of the observation stations
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independently and the global constraint that all intermedi-
ate parameters relate to the same source is not effective.
Therefore the two-step method has to associate estimated
parameters with their relevant sources in multiple sources lo-
calization. Fortunately, the DPD methods, proposed in [3] for
single source and proposed in [4] for multiple sources, can
solve the two previous problems of two-step method perfectly
since it direct parameterizes the received signal data by the
location of sources. There is no intermediate parameters to
estimate and the association of the parameters and location
of sources are realized implicitly. It is easy to know that the
DPD method outperforms the two-step method, especially
at low SNR. On the other hand, the localization capacity
of DPD method is expanded by using all observations to-
gether to increase the degree of freedom of data. A DPD
method uses the Maximum Likelihood (ML) criterion on
the location-parameterized data model and ends with a cost
function which requires the exhaustive searching. Therefore
the DPD method can be considered achieving better perfor-
mance by costing more computational resources. It is a high
dimensional searching in multiple sources localization sce-
nario, which costs too much computational resources. It is
necessary to design the efficient algorithm.

In [4], the authors solved the high dimensional searching
for multiple sources localization problem by two dimensional
searching based on the subspace decomposition. In [5], the
authors separated signal corresponding to each source one
another and then estimated the position of each source us-
ing an iterative processing respectively. In [6], the authors
decoupled the sources by Minimum Variance Distortionless
Response (MVDR) approach and then acquire a high res-
olution localization algorithm. In [7], the authors solved
the high-dimensional optimization by a sequence of low-
dimensional optimizations using the alternating projection
technique. These decoupling methods improved the efficien-
cy of DPD for multiple sources but all end with calculating a
low order Eigen-decomposition at every grid point. If the or-
der is low, the computation load can be accepted even though
the number of grid points could be large. However, the order
is equal to the number of the observation stations. In TDOA-
based multiple sources localization scenario, the number of
the observation stations has to be larger than the number of
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sources [8] which make it possible that the order of matrix
for Eigen-decomposition is large and lots of computation re-
sources are required. In order to reduce the computation load
of the TDOA-based multiple sources localization method, we
constructed a cost function using the orthogonal relationship
between received signals and noise based on the subspace
decomposition and reveal that the nature of the cost function
is to verify the column-correlation of some matrix. Finally,
we got a Determinant-based cost function which leads to less
computation load than Eigen-decomposition-based one.

2. PROBLEM FORMULATION

Consider P transmitters whose positions are denoted by the
vectors of coordinates lp, p = 1, . . . , P and N observation
stations whose positions are denoted by the vectors of co-
ordinates pn, n = 1, . . . , N . Every observation station is
equipped with single sensor. The complex envelope of the
waveform observed by the n-th station is given as

xn(t) =

P∑
p=1

ηnpsp(t− τn(lp)) + wn(t) 0 < t ≤ T

(1)

where ηnp is an unknown complex scalar representing the sig-
nal attenuation due to path loss between the n-th station and
the p-th transmitter. sp(t − τn(lp)) is the p-th emission sig-
nal delayed by τn(lp) = ‖pn − lp‖/c, c is the light velocity.
wn(t) represents zero-mean, white, circular complex Gaus-
sian noise. The observed signal time interval [0, T ] can be
partitioned into K sections, each of length T/K. It is as-
sumed that T/K � maxp τn(lp), which can be obtained by
using long enough observation interval for the region of in-
terest. Therefore the n-th observed signal in k-th section de-
noted by the M × 1 vector of Fourier coefficients is given
by

x̄n(k) = An(L)s̄(k) + w̄n(k) (2)

where

An(L) , [ηn1Qn1 ηn2Qn2 · · · ηnPQnP ] ∈ CM×MP

Qnp , diag(ej2πf1τn(lp), . . . , ej2πfMτn(lp)) ∈ CM×M

s̄(k) , [s̄T1 (k) s̄T2 (k) s̄TP (k)]T ∈ CMP (3)

therein s̄p(k) ∈ CM and w̄n(k) ∈ CM represents M Fourier
coefficients of the p-th emission signal and the n-th received
noise respectively corresponding to frequencies f1, . . . , fM .
L is the set of all transmitters’ position vectors.

Now, concatenate Fourier-coefficient vectors from all ob-
servation stations

x̄(k) , [x̄T1 (k) x̄T2 (k) x̄TN (k)]T ∈ CMN

A(L) , [AT
1 (L) AT

2 (L) AT
N (L)]T ∈ CMN×MP

w̄(k) , [w̄T
1 (k) w̄T

2 (k) w̄T
N (k)]T ∈ CMN (4)

We get

x̄(k) = A(L)s̄(k) + w̄(k) (5)

The column-space ofA(L) is known as local manifold of the
received signal. Without loss of generality, we can assume in
A(L) that

N∑
n=1

|ηnp|2 = 1 (6)

The problem considered here may be stated briefly: Given
a series of samples x̄(1), x̄(2), . . . , x̄(K) and the data model
in (5), estimate all transmitters’ position vectors L efficiently.

3. THE EFFICIENCY-IMPROVED DPD METHOD

3.1. Decoupling the transmitters

We start with approximating the covariance of the received
signal using the covariance of examples R̂ , which is a good
approximation when the number of sections K is big enough

R̂ ,
1

K

K∑
k=1

x̄(k)x̄H(k) (7)

And then apply the Eigen-decomposition technique

R̂ = USΛSU
H
S +UNΛNU

H
N (8)

where the diagonal matrices ΛS ∈ RMP×MP and ΛN ∈
RM(N−P )×M(N−P ) consist of the group of P bigger eigen-
values and the rest of eigen-values respectively. The signal
subspace consists of columns of US ∈ CMN×MP and the
noise subspace consists of columns ofUN ∈ CMN×M(N−P ).
Note that the number of transmitters P can be estimated by
model order determination based on frequency-domain MDL
criterion, as described in [9].

The orthogonal relationship between the local manifold of
the received signal and the noise subspace is given as

UH
NA(L) = 0 (9)

According to (3) and (4), the local manifold of the received
signalA(L) can be divided into P blocks

A(L) , [V (l1) V (l2) V (lP )] (10)

then there are P orthogonal relationships corresponding to P
transmitters respectively

UH
N V (lp) = 0, p = 1, . . . , P (11)

where

V (lp) ,


η1pQ1p

η2pQ2p

...
ηNpQNp

 (12)
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It is worthy mentioning that the subspace-decomposition
technique is also applied in [4] but we construct a more ef-
ficient cost function using the noise subspace instead of the
signal subspace.

3.2. Construct the efficient cost function

In subsection 3.1, the P transmitters are decoupled to satisfy
P orthogonal relationships respectively. Furthermore, the P
equations are the same except for the locations of transmitters
and the attenuation. Therefore a basic cost function with re-
spect to the location variable l and the attenuation variable ηl
can be construct to verify those orthogonal relationships

f0(l,ηl) , ‖UH
N V (l,ηl)‖F (13)

where

ηl , [η1l η2l · · · ηNl]
T , ‖ηl‖ = 1

and ‖ · ‖F denotes the Frobenius norm. the ‖ηl‖ = 1 is from
(6). Dividing UH

N into N blocks,

UH
N ,

[
G1 G2 · · · GN

]
(14)

and substituting (12) and (14) in the cost function (13), we get

f0(l,ηl) = ‖
N∑
n=1

ηnlGnQn(l)‖F (15)

= ‖
N∑
n=1

ηnlVec(GnQn(l))‖F

where the notation Vec(·) denotes the vectorization operation.
The second equation is true because ‖ · ‖F is an entrywise
norm.

Defining

Ψ(l) ,


Vec(G1Q1(l))T

Vec(G2Q2(l))T

...
Vec(GNQN (l))T


T

∈ CM
2(N−P )×N

the cost function in (15) can be rewritten as

f0(l,ηl) = ‖Ψ(l)ηl‖F (16)

The purpose of the cost function is to find out the set of solu-
tion pairs (lp,ηlp) of equation f0(l,ηl) = 0 which means the
orthogonal relationships in (11). Equivalently, we have the
homogeneous linear equations

Ψ(l)ηl = 0 (17)

Given ‖ηl‖ = 1, equation (17) having nontrivial solutions
means that the columns of Ψ(l) are linear correlation, i.e.,

rank(Ψ(l)) < N . Therefore, the new objective function is
just with respect to the location variable l

f1(l) ,

{
rank(Ψ(l)) < N if l ∈ L
rank(Ψ(l)) = N if l /∈ L

(18)

Next, two linear algebraic lemmas, Theorem 5.2.1 and equa-
tion 5.2.27 in [10], are used to get the final efficient cost func-
tion

F (l) , det(ΨH(l)Ψ(l))

{
= 0 if l ∈ L
> 0 if l /∈ L

(19)

Considering the estimation error of the noise subspace,
we can achieve a pseudo spectrum over the region of interest

P (l) =
1

det(ΨH(l)Ψ(l))
(20)

The P higher peaks of P (l) correspond to the locations set of
multiple transmitters L.

Compared with the eigenvalue-based pseudo spectrum
proposed in [4],

Q(l) = λmax(D) (21)

where matrix D has the same size as ΨH(l)Ψ(l). it is de-
terminant that is computed in our pseudo spectrum instead of
Eigen-decomposition at every grid point. Note that the com-
plexity of Eigen-decomposition is about O(N3) while that of
determinant algorithm in [11] is about O(N2). Furthermore,
the calculation will be performed thousands of times because
of thousands of location points in region of interest, which
make the calculation in searching phase costs the main part
of the total calculation time. Therefore, our improved method
will save much more calculation time and get more efficient.

4. NUMERICAL SIMULATION RESULTS

In order to present the improved efficiency of our method
(20), Fig. 1a shows that the calculation time of determinan-
t operation (red line) and Eigen-decomposition (green line)
increase with the order of the complex matrix and the im-
provement of efficiency at every order value. The order is
varied from 4 to 24. At each order value, the two operations
were performed twenty thousand of times respectively, which
is about the amount of searching a region of 200 × 100m2

by 1m2. It is clearly seen that the improved efficiency (blue
line) is more than 85% when the order of the complex matrix
varies between 4 and 24.

Consider four single sensors located at coordinates (-250,-
150),(-250,150),(250,150) and (250,-150)m, and two trans-
mitters transmitting unknown Gaussian signals. The channel
attenuation is a circular, complex Gaussian, random variable,
with mean of 1 and standard deviation of 0.1 and independent
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Fig. 1: the performance of the proposed spectrum

among the pairs of sensor and transmitter. The location esti-
mation is based on K = 1280 sections of M = 32 Fourier
coefficients associated with frequencies up to 2MHz. the S-
NR is varied from −10dB to 20dB. we performed 200 Monte
Carlo simulations at each SNR to compare the performance
of our pseudo spectrum (20), denoted by DPD-DET and the
one in [4], denoted by DPD-EIGEN. The single emitter ML
estimator in [3, 6], denoted by DPD-SML, is also compared
with the proposed method in this paper. Fig. 1b shows two
group of the Root Mean Square of Error (RMSE). The ful-
l line group denotes the distance of two transmitters is 80m
and the imaginary line group denotes 45m.

It can be seen that the accuracy of DPD-DET and DPD-
EIGEN is approximate at every SNR value in both groups and
they both outperform the SML estimator, which indicates that
the proposed method and DPD-EIGEN decoupled the trans-
mitters while the SML estimator attempted to fit both signals.

The derivation of our efficient objective function is based
on the subspace decomposition which is the fundamental of
the classical Multiple Signal Classification (MUSIC) algo-
rithm. It is well-known that MUSIC has the super resolu-
tion. In order to examine the resolution of DPD-DET, con-

(a) the DPD-SML spectrum

(b) the DPD-DET spectrum

Fig. 2: the resolution of the proposed spectrum

sider three neighboring transmitters located at (-97.5,-72.5),(-
97.5,-27.5) and (-152.5,-37.5)m respectively and increasing
four more observation stations. Fig. 2a and Fig. 2b demon-
strate the spectrums of SML estimator and the DPD-DET
spectrum (20) at SNR of 20dB. It is clearly seen that there
are three sharp peaks in the DPD-DET spectrum (20) while
only one wide main lobe in the spectrum of SML estimator.

5. CONCLUSION

In this paper, we constructed a determinant-based cost func-
tion using the noise subspace. The improved estimator re-
serves the accuracy and super resolution of the MUSIC-like
method and the reduced calculation load was more than 85%
in our simulation, which make the improved method reliable
and more real-time. Furthermore, the idea of the determinant-
based objective function can be also used in AOA-based lo-
calization.
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